674 Bull. Chem. Soc. Jpn., 75, No. 4 (2002)
HEADLINE ARTICLES
6147; J. J. Daly, J. Chem. Soc., 1965, 4789; J. J. Daly, J. Chem.
Soc. A, 1966, 428.
Weidenbruch, Eur. J. Inorg. Chem., 1999, 373.; M. Driess and H.
Grützmacher, Angew. Chem., Int. Ed. Engl., 35, 828 (1996); R.
Okazaki and N. Tokitoh, Acc. Chem. Res., 33, 625 (2000); N.
Tokitoh and R. Okazaki, Coord. Chem. Rev., 210, 251 (2000).
21 J. Escudié and H. Ranaivonjatovo, Adv. Organomet.
Chem., 14, 113 (1999); J. Escudié, C. Couret, H. Ranaivonjatovo,
and J. Satgé, Coord. Chem. Rev., 130, 427 (1994); J. Barrau, J.
Escudié, and J. Satgé, Chem. Rev., 90, 283 (1990).
4
P. Ehrlich, Lancet, 173, 351 (1907); P. Ehrlich and A.
Bertheim, Ber. Dtsch. Chem. Ges., 44, 1265 (1911); P. Ehrlich and
A. Bertheim, Ber. Dtsch. Chem. Ges., 45, 761 (1912).
5
K. Hedberg, E. W. Hughes, and J. Waser, Acta Crystallogr.,
14, 369 (1961); A. C. Rheingold and P. J. Sullivan, Organometal-
lics, 2, 327 (1983).
6
7
8
K. Pitzer, J. Am. Chem. Soc., 70, 2140 (1948).
R. West, M. Fink, and J. Michl, Science, 214, 1343 (1981).
M. Yoshifuji, I. Shima, N. Inamoto, K. Hirotsu, and T.
22 P. P. Power, J. Chem. Soc., Dalton Trans., 1998, 2939; H.
Grützmacher and T. F. Fässler, Chem. Eur. J., 6, 2317 (2000).
23 M. Stürmann, W. Saak, H. Marsmann, and M.
Weidenbruch, Angew. Chem., Int. Ed., 38, 187 (1999).
24 S. Nagase, S. Suzuki, and T. Kurakake, J. Chem. Soc.,
Chem. Commun., 1990, 1724.
25 M. Ates, H. J. Breunig, S. Gulec, W. Offermann, K.
Häberle, and M. Dräger, Chem. Ber., 122, 473 (1989); M. Ates, H.
J. Breunig, K. Ebert, S. Gülec, R. Kaller, and M. Dräger, Organo-
metallics, 11, 145 (1992).
Higuchi, J. Am. Chem. Soc., 103, 4587 (1981).
L. Weber, Chem. Rev., 92, 1839 (1992); M. Yoshifuji,
9
“Multiple Bonds and Low Coordination in Phosphorus Chemis-
try,” ed by M. Regitz and O. J. Scherer, George Thieme Verlag,
Stuttgart, Germany (1990), p. 321; A. H. Cowley, J. E. Kilduff, J.
G. Lasch, S. K. Mehrotra, N. C. Norman, M. Pakulski, B. R.
Whittlesey, J. L. Atwood, and W. E. Hunter, Inorg. Chem., 23,
2582 (1984), and references cited therein.
10 A. H. Cowley, J. G. Lasch, N. C. Norman, and M.
Pakulski, J. Am. Chem. Soc., 105, 5506 (1983); C. Couret, J.
Escudié, Y. Madaule, H. Ranaivonjatovo, and J.-G. Wolf, Tetrahe-
dron Lett., 24, 2769 (1983); A. H. Cowley, N. C. Norman, and M.
Pakulski, J. Chem. Soc., Dalton Trans., 1985, 383.
11 A. H. Cowley, J. G. Lasch, N. C. Norman, M. Pakulski,
and B. R. Whittlesey, J. Chem. Soc., Chem. Commun., 1983, 881;
B. Twamley and P. P. Power, Chem. Commun., 1998, 1979; K.
Tsuji, Y. Fujii, S. Sasaki, and M. Yoshifuji, Chem. Lett., 1997,
855.
26 N. Tokitoh, H. Suzuki, R. Okazaki, and K. Ogawa, J. Am.
Chem. Soc., 115, 10428 (1993).
27 N. Tokitoh, K. Wakita, R. Okazaki, S. Nagase, P. v. R.
Schleyer, and H. Jiao, J. Am. Chem. Soc., 119, 6951 (1997); K.
Wakita, N. Tokitoh, R. Okazaki, S. Nagase, P. v. R. Schleyer, and
H. Jiao, J. Am. Chem. Soc., 121, 11336 (1999); K. Wakita, N.
Tokitoh, and R. Okazaki, Bull. Chem. Soc. Jpn., 73, 2157 (2000).
28 K. Wakita, N. Tokitoh, R. Okazaki, and S. Nagase, Angew.
Chem., Int. Ed., 39, 634 (2000); K. Wakita, N. Tokitoh, R.
Okazaki, N. Takagi, and S. Nagase, J. Am. Chem. Soc., 122, 5648
(2000).
12 U. Weber, G. Huttner, O. Scheidsteger, and L. Zsolnai, J.
Organomet. Chem., 289(2-3), 357 (1985); A. H. Cowley, N. C.
Norman, M. Pakulski, D. L. Bricker, and D. H. Russell, J. Am.
Chem. Soc., 107, 8211 (1985); A. H. Cowley, N. C. Norman, and
M. Pakulski, J. Am. Chem. Soc., 106, 6844 (1984); G. Huttner, U.
Weber, B. Sigwarth, and O. Scheidsteger, Angew. Chem., Int. Ed.
Engl., 21, 215 (1982); S. J. Black, D. E. Hibbs, M. B. Hursthouse,
C. Jones, and J. W. Steed, Chem. Commun., 1998, 2199; G.
Huttner, U. Weber, and L. Zsolnai, Z. Naturforsch., B: Chem. Sci.,
37, 707 (1982); K. Plossel, G. Huttner, and L. Zsolnai, Angew.
Chem., Int. Ed. Engl., 28, 446 (1989); C. Jones, Coord. Chem.
Rev., 215, 151 (2001).
29 N. Takeda, A. Shinohara, and N. Tokitoh, Organometallics,
21, 256 (2002).
30 H. Suzuki, N. Tokitoh, S. Nagase, and R. Okazaki, J. Am.
Chem. Soc., 116, 11578 (1994); N. Tokitoh, T. Matsumoto, K.
Manmaru, and R. Okazaki, J. Am. Chem. Soc., 115, 8855 (1993);
T. Matsumoto, N. Tokitoh, and R. Okazaki, Angew. Chem., Int.
Ed. Engl., 33, 2316 (1994); M. Saito, N. Tokitoh, and R. Okazaki,
J. Am. Chem. Soc., 119, 11124 (1997); H. Suzuki, N. Tokitoh, R.
Okazaki, S. Nagase, and M. Goto, J. Am. Chem. Soc., 120, 11096
(1998); T. Matsumoto, N. Tokitoh, and R. Okazaki, J. Am. Chem.
Soc., 121, 8811 (1999); N. Tokitoh and R. Okazaki, Main Group
Chem. News, 3, 4 (1995).
13 N. Tokitoh, Y. Arai, T. Sasamori, R. Okazaki, S. Nagase, H.
Uekusa, and Y. Ohashi, J. Am. Chem. Soc., 120, 433 (1998).
14 N. Tokitoh, Y. Arai, R. Okazaki, and S. Nagase, Science,
277, 78 (1997); N. Tokitoh, Y. Arai, and R. Okazaki, Phosphorus,
Sulfur, and Silicon, 371, 124 (1997).
15 R. Okazaki, M. Unno, and N. Inamoto, Chem. Lett., 1987,
2293; R. Okazaki, M. Unno, and N. Inamoto, Chem. Lett., 1989,
791; R. Okazaki, N. Tokitoh, and T. Matsumoto, “Synthetic Meth-
ods of Organometallic and Inorganic Chemistry,” ed by W. A.
Herrmann, N. Auner, and U. Klingebiel, Thieme, New York
(1996), Vol. 2, p. 260.
16 B. Twamley, C. D. Sofield, M. M. Olmstead, and P. P.
Power, J. Am. Chem. Soc., 121, 3357 (1999).
17 N. Kano, N. Tokitoh, and R. Okazaki, Organometallics, 17,
1241 (1998), and references cited therein.
18 T. Sasamori, N. Takeda, and N. Tokitoh, Chem. Commun.,
2000, 1353.
19 N. Tokitoh, J. Organomet. Chem., 611, 217 (2000).
20 R. Okazaki and R. West, Adv. Organomet. Chem., 39, 232
(1996); R. West, Angew. Chem., Int. Ed. Engl., 26, 1201 (1987);
G. Raabe and J. Michl, Chem. Rev., 85, 419 (1985); M.
31 N. Tokitoh, Y. Arai, J. Harada, and R. Okazaki, Chem.
Lett., 1995, 959.
32 M. Yoshifuji, K. Shibayama, and N. Inamoto, Chem. Lett.,
1984, 603.
33 T. Sasamori, Y. Arai, N. Takeda, R. Okazaki, and N.
Tokitoh, Chem. Lett., 2001, 42.
34 H. Bürger, R. Eujen, G. Becker, O. Mundt, M.
Westerhausen, and C. Witthauer, J. Mol. Struct., 98, 265 (1983).
35 F. Calderazzo, R. Poli, and G. Pelizzi, J. Chem. Soc., Dal-
ton Trans., 11, 2365 (1984).
36 Some examples of theoretical (ab initio and semi empiri-
cal) calculations for HPwPH and PhPwPPh models have been re-
ported previously: M. Yoshifuji, K. Shibayama, and N. Inamoto, J.
Am. Chem. Soc., 105, 2495 (1983); M. Yoshifuji, T. Hashida, N.
Inamoto, K. Hirotsu, T. Horiuchi, T. Higuchi, K. Ito, and S.
Nagase, Angew. Chem., Int. Ed. Engl., 24, 211 (1985); R. Gleiter,
G. Friedrich, M. Yoshifuji, K. Shibayama, and N. Inamoto, Chem.
Lett., 1984, 313 (1984). In addition, DFT calculations for
PhPwPPh, PhAswAsMe, PhSbwSbPh, and PhBiwBiPh models
have also been reported: F. A. Cotton, A. H. Cowley, and X. Feng,
J. Am. Chem. Soc., 120, 1795 (1998).