6024
Organometallics 1997, 16, 6024-6027
Syn th esis a n d Str u ctu r a l Ch a r a cter iza tion of a n
Au th en tic P la tin u m (IV) Ca r bon yl Com p ou n d
J uan Fornie´s,* Miguel A. Go´mez-Saso, Antonio Mart´ın, Francisco Mart´ınez,
Babil Menjo´n, and J avier Navarrete
Departamento de Qu´ımica Inorga´nica, Instituto de Ciencia de Materiales de Arago´n,
Universidad de Zaragoza-Consejo Superior de Investigaciones Cient´ıficas,
E-50009 Zaragoza, Spain
Received J uly 29, 1997X
Summary: The oxidative addition of Br2 to [NBu4]2[Pt-
(C6F5)4] followed by halide extraction with AgClO4 in the
presence of CO gave [NBu4][trans-PtIV(C6F5)4Br(CO)],
the first Pt(IV) carbonyl derivative to be structurally
characterized. It is demonstrated that the previously
reported [NEt4][PtBr3H2(CO)] complex is, in fact, the Pt-
(II) derivative [NEt4][PtBr3(CO)].
tion state.8,9 For a given metal the availability of
electron density decreases as its oxidation state in-
creases, and this trend is normally evidenced by an
increase in ν(CO) values.
The first reported metal carbonyl compound was the
Pt(II) derivative [Pt2(µ-Cl)2Cl2(CO)2].10 Since then many
carbonyl compounds of platinum in a oxidation state of
II or lower have been described,11 whereas only a few
Pt(IV) carbonyl compounds have been reported.12-16
This latter category comprises a series of hydridos
carbonyl derivatives of Pt(IV),14 including the structur-
ally characterized15 complex [NEt4][PtBr3H2(CO)]. In
In tr od u ction
Carbon monoxide is one of the most common and
useful ligands in organotransition metal chemistry.1 Its
ability to bind to low-valent metals was at first puzzling,
although it could be satisfactorily explained by postulat-
ing the existence of a synergic bond with two compo-
nents: carbon-to-metal σ-donation and metal-to-carbon
π-back-donation.2,3 For a long time, this bonding model
was found to apply to almost every stable metal carbonyl
compound, and as a result of this, the idea emerged that
π-back-donation was needed for metal carbonyls to be
stable. This idea is, however, not upheld as an increas-
ing number of metal carbonyl compounds in which CO
acts as a mainly σ-donor ligand4 are being reported.
These examples appear when the electrons of the metal
center are unavailable for π-back-bonding with CO, as
is the case, for instance, in d0 metal ions6,7 or in late-
and post-transition metals in a medium-to-high oxida-
(7) In some instances, the appreciable population of the CO π* MO
in carbonyl d0 group
4 metal complexes has been attributed to
electronic interaction with neighboring ligands, see: Procopio, L. J .;
Carroll, P. J .; Berry, D. H. Polyhedron 1995, 14, 45-55. Howard, W.
A.; Parkin, G.; Rheingold, A. L. Polyhedron 1995, 14, 25-44. Guo, Z.;
Swenson, D. C.; Guram, A. S.; J ordan, A. F. Organometallics 1994,
13, 766-773. Antonelli, D. M.; Tjaden, E. B.; Stryker, J . M. Organo-
metallics 1994, 13, 763-765. Howard, W. A.; Trnka, T. M.; Parkin, G.
Organometallics 1995, 14, 4037-4039.
(8) Reviews: Wang, C.; Hwang, G.; Siu, S. C.; Aubke, F.; Bley, B.;
Bodenbinder, M.; Bach, C.; Willner, H. Eur. J . Solid State Inorg. Chem.
1996, 33, 917-930. Aubke, F. J . Fluorine Chem. 1995, 72, 195-201.
Aubke, F.; Wang, C. Coord. Chem. Rev. 1994, 137, 483-524. Weber,
L. Angew. Chem. 1994, 106, 1131; Angew. Chem., Int. Ed. Engl. 1994,
33, 1077-1078.
(9) Bach, C.; Willner, H.; Wang, C.; Rettig, S. J .; Trotter, J .; Aubke,
F. Angew. Chem. 1996, 108, 2104-2106; Angew. Chem., Int. Ed. Engl.
1996, 35, 1974-1976. Dias, H. V. R.; J in, W. C. Inorg. Chem. 1996,
35, 3687-3694. Wang, C. Q.; Lewis, A. R.; Batchelor, R. J .; Einstein,
F. W. B.; Willner, H.; Aubke, F. Inorg. Chem. 1996, 35, 1279-1285.
Rack, J . J .; Webb, J . D.; Strauss, S. H. Inorg. Chem. 1996, 35, 277-
278. Bodenbinder, M.; Balzerjollenbeck, G.; Willner, H.; Batchelor, R.
J .; Einstein, F. W. B.; Wang, C.; Aubke, F. Inorg. Chem. 1996, 35, 82-
92. Dias, H. V. R.; J in, W. J . Am. Chem. Soc. 1995, 117, 11381-11382.
Dias, H. V. R.; Lu, H.-L. Inorg. Chem. 1995, 34, 5380-5382. Wang, C.
Q.; Bley, B.; Balzerjollenbeck, G.; Lewis, A. R.; Siu, S. C.; Willner, H.;
Aubke, F. J . Chem. Soc., Chem. Commun. 1995, 2071-2072. Hulburt,
P. K.; Rack, J . J .; Luck, J . S.; Dec, S. F.; Webb, J . D.; Anderson, O. P.;
Strauss, S. H. J . Am. Chem. Soc. 1994, 116, 10003-10014.
(10) Schu¨tzenberger, P. Ann. Chim. Phys. (Paris) 1868, 15, 100-
106. Schu¨tzenberger, P. Bull. Soc. Chim. Fr. 1868, 10, 188-192.
(11) Cross, R. J . In Comprehensive Organometallic Chemistry II;
Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Elsevier Science
Ltd.: Oxford, U.K., 1995; Vol. 9, Section 7.1, pp 392-411. Hartley, F.
R. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone,
F. G. A., Abel, E. W., Eds.; Pergamon Press: Oxford, U.K., 1982; Vol.
6, Section 39.1, pp 474-494.
X Abstract published in Advance ACS Abstracts, December 1, 1997.
(1) Bates, R. W. In Comprehensive Organometallic Chemistry II;
Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Elsevier Science
Ltd.: Oxford, U.K., 1995; Vol. 12, Chapter 4, pp 349-386. Elschenb-
roich, C.; Salzer, A. Organometallics, 2nd ed.; VCH: Weinheim,
Germany, 1992; Section 14.5, pp 220-238. Pruchnik, F. P. Organo-
metallic Chemisty of the Transition Elements; Plenum Press: New York
1990; Chapter 2, pp 23-127. Cotton, F. A.; Wilkinson, G. Advanced
Inorganic Chemistry, 5th ed.; J ohn Wiley & Sons: New York, 1988;
Chapter 22, pp 1021-1051. Collman, J . P.; Hegedus, L. S.; Norton, J .
R.; Finke, R. G. Principles and Applications of Organotransition Metal
Chemistry; University Science Books: Mill Valley, CA, 1987; Section
3.6.a, pp 110-117.
(2) Mingos, D. M. P. In Comprehensive Organometallic Chemistry;
Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press:
Oxford, U.K., 1982; Vol. 3, Section 19.2, pp 2-27. Braterman, P. S. In
Structure and Bonding; Springer: Berlin, Germany, 1972; Vol. 10, pp
57-86. Cable, J . W.; Sheline, R. K. Chem. Rev. 1956, 56, 1-26. Chatt,
J .; Williams, A. A. J . Chem. Soc. 1954, 4403-4411.
(3) The multiple character of the M-C bond in metal carbonyl
compounds had already been suggested much earlier, see: Gilliland,
W. L.; Blanchard, A. A. J . Am. Chem. Soc. 1926, 48, 410-420. Pauling,
L. The Nature of the Chemical Bond; Cornell University Press: Ithaca,
NY, 1939.
(4) Lynn, M. A.; Bursten, B. E. Inorg. Chim. Acta 1995, 229, 437-
443. See, however, ref 5.
(5) High ν(CtO) and associated FCO values in cationic and neutral
“non-classical” metal carbonyls have alternatively been interpreted in
terms of electrostatic effects, see: Goldman, A. S.; Krogh-J espersen,
K. J . Am. Chem. Soc. 1996, 118, 12159-12166. These authors conclude
that “the magnitude of σ-bonding has a negligible effect on FCO”.
(6) Selg, P.; Britzinger, H. H.; Andersen, R. A.; Horva´th, I. T. Angew.
Chem. 1995, 107, 877; Angew. Chem., Int. Ed. Engl. 1995, 34, 791-
793.
(12) Dell’Amico, D. B.; Calderazzo, F.; Marchetti, F.; Merlino, S. J .
Chem. Soc., Dalton Trans. 1982, 2257-2260.
(13) (a) Crocker, C.; Goggin, P. L.; Goodfellow, R. J . Chem. Soc.,
Chem. Commun. 1978, 1056-1057. (b) King, R. B.; Bond, A. J . Am.
Chem. Soc. 1974, 96, 1338-1343.
(14) (a) Rachkovskaya, L. N.; Eremenko, N. K.; Matveev, K. I. Russ.
J . Inorg. Chem. 1972, 17, 1173-1175. (b) Rachkovskaya, L. N.;
Eremenko, N. K.; Matveev, K. I. Dokl. Akad. Nauk SSSR 1970, 190,
1396-1398; Chem. Abstr. 1970, 72, 139098t. (c) Rachkovskaya, L. N.;
Eremenko, N. K.; Matveev, K. I. Izv. Sib. Otd. Akad. Nauk SSSR, Ser.
Khim. Nauk 1970, 5, 78-84; Chem. Abstr. 1971, 74, 60302n.
(15) Mironov, Yu. I.; Plyasova, L. M.; Bakakin, V. V. Kristallografiya
1974, 19, 511-515; Chem. Abstr. 1974, 81, 42541e.
(16) (a) Scott, J . D.; Puddephatt, R. J . Organometallics 1986, 5,
1253-1257. (b) Gillard, R. D.; Pilbrow, M. F. Polyhedron 1982, 1, 689-
692.
S0276-7333(97)00651-1 CCC: $14.00 © 1997 American Chemical Society