380 (3.94), 456 (3.66), 505 (sh, 3.54), 598 nm (3.30); MS (FAB): m/z 1166
(M+), 1138 (M+ 2 CO), 968 (M+ 2 7CO 2 2). 10: orange powder, mp
198–199.5 °C (decomp.); 1H NMR (200 MHz, CDCl3): d 1.34 (18 H, s,
p-But), 1.63 (36 H, s, o-But), 6.45 (2 H, dd, 3JPH
=
4JPH 3.6 Hz, PNC–CH);
31P{1H} NMR (81 MHz, CDCl3): d 154.1 (satellite d, 1JPW 250.1 Hz); UV–
VIS (n-hexane): lmax(log e) 242 (4.79), 319 (4.12), 413 (4.09), 482 nm
(3.45); MS (FAB): m/z 898 (M+), 870 (M+ 2 CO).
‡ Preparative procedure: 8: under argon, a solution of phenylethynyl-
phosphonous dichloride 2 (356 mg, 1.8 mmol)15 in thf (10 ml) was cooled
at 278 °C and was allowed to react with triisopropylphenylmagnesium
bromide (1.8 mmol) and the mixture was warmed to room temp. to give
phenylethynylphosphinous chloride 3 (X = Cl, dP 40) together with the
bromide 3 (X = Br, dP 22) (chloride:bromide = 1:0.8). The mixture of the
halides 3 (X = Cl, Br) was allowed to react with Zn (261 mg, 4.0 mmol) in
thf (7 ml) at room temp. for 3 h to give the corresponding diphosphane 4 as
a diastereomeric mixture (dP 266, 265); d,l:meso = ca. 1:1. It was then
refluxed in thf for 24 h to give (E,Z)-5. The ligand (E,Z)-5 was allowed to
react with W(CO)5(thf) (1.7 mmol) in refluxing thf for 9 h. 8 (62 mg, 0.051
mmol)† was isolated in 6% yield based on 2, together with 6 [dP 114
(satellite d, 1JPW 265 Hz) and 186, AB, 4JPP 8 Hz] and 7 [dP 139, 1JPW 251
Hz].
P(2)
C(3)
C(1)
C(2)
C(4)
W(1)
W(2)
P(1)
C(26)
C(28A)
§ Crystal data for 8: recrystallised from ethanol–benzene. C53H56O7P2W2,
C(27A)
M
= 1234.67, monoclinic, space group P21/n, a = 10.241(3),
Fig. 1 The molecular structure of bis-tungsten complex 8 showing the
atomic labelling scheme; only atoms with dominant occupancy factors are
displayed. Important bond lengths (Å) and angles (°): W(1)–P(1) 2.493(3),
W(1)–P(2) 2.490(3), W(2)–P(1) 2.679(3), W(2)–P(2) 2.664(3), W(2)–C(1)
2.35(1), W(2)–C(2) 2.321(10), W(2)–C(3) 2.24(1), W(2)–C(4) 2.18(1),
P(1)–C(3) 1.788(10), P(2)–C(4) 1.737(9), C(1)–C(2) 1.47(1), C(1)–C(4)
1.49(1), C(2)–C(3) 1.47(1), C(3)–C(4) 1.47(1); P(1)–W(1)–P(2) 73.22(9),
P(1)–W(2)–P(2) 67.60(8), C(2)–C(1)–C(4) 90.0(8), C(1)–C(2)–C(3)
90.2(8), C(2)–C(3)–C(4) 90.4(8), C(1)–C(4)–C(3) 89.2(8).
b = 25.462(4), c = 20.219(3) Å, b = 92.61(2)°, U = 5266(1) Å3, Z = 4,
T = 223 K, Dc = 1.557 g cm23; 9529 reflections with 2q @ 50.0° were
recorded on a four-circle diffractometer using graphite-monochromated
Mo-Ka radiation. Of these, 6693 with I > 3s(I) were judged as observed.
The structure was solved using SIR92.19 The non-hydrogen atoms, except
for C(27) and C(28), were refined anisotropically. Atoms C(27) and C(28)
were disordered and refined isotropically (occupancy factor for the
dominant: 0.55). Hydrogen atoms except for those on C(26)–C(28) were
included, but their positions were not refined. R = 0.054, Rw = 0.064.
CCDC 182/653.
Ar
P
¶ Preparative procedure: 9 (E,E)-1c (86 mg, 0.14 mmol) was allowed to
react with 0.43 mmol of W(CO)4(MeCN)2 in refluxing thf (30 ml) for 1.5
h to give 90 mg of 9 in 54% yield.† 10: a mixture of diphos-
phinidenecyclobutene (E,E)-1c (31 mg, 0.051 mmol) and W(CO)4-
(MeCN)2 (40 mg, 0.11 mmol) was dissolved in thf (20 ml) and the solution
was stirred at room temp. for 21 h to give 10 (20 mg, 43% yield).†
Ar
P
W(CO)3
H
H
H
i
(OC)4W
1c
+
(OC)4W
H
P
P
Ar
9
Ar
1 M. Yoshifuji, K. Toyota and N. Inamoto, J. Chem. Soc., Chem.
Commun., 1984, 689; M. Yoshifuji, K. Toyota, K. Shibayama and
N. Inamoto, Tetrahedron Lett., 1984, 25, 1809; M. Yoshifuji, K. Toyota,
H. Yoshimura, K. Hirotsu and A. Okamoto, J. Chem. Soc., Chem.
Commun., 1991, 124; M. Yoshifuji, K. Toyota and H. Yoshimura,
Chem. Lett., 1991, 491.
2 S. Ito, K. Toyota and M.Yoshifuji, Chem. Lett., 1995, 747.
3 M. Yoshifuji, I. Shima, N. Inamoto, K. Hirotsu and T. Higuchi, J. Am.
Chem. Soc., 1981, 103, 4587; 1982, 104, 6167.
4 M. Yoshifuji, K. Toyota, I. Matsuda, T. Niitsu, N. Inamoto, K. Hirotsu
and T. Higuchi, Tetrahedron, 1988, 44, 1363.
5 R. Appel, V. Winkhaus and F. Knoch, Chem. Ber., 1987, 120, 243.
6 G. Ma¨rkl, P. Kreitmeier, H. No¨th and K. Polborn, Angew. Chem., Int.
Ed. Engl., 1990, 29, 927; G. Ma¨rkl and R. Hennig, Liebigs Ann., 1996,
2059.
10
Scheme 3 Ar = C6H2But3-2,4,6. Reagents and conditions: i, W(CO)4-
(MeCN)2, thf, in the dark.
bonylchromium(0)17 and (h -diisopropylidenecyclobutene)tri-
6
carbonylchromium(0),18 this is the first example in the di-
phosphinidenecyclobutene–tungsten carbonyl system, where
the ligand is doubly coordinated to tungsten.
This work was supported in part by the Grants-in-Aid for
Scientific Research (Nos. 08454193 and 09239101) from the
Ministry of Education, Science, Sports and Culture, Japanese
Government.
7 M. Yoshifuji, K. Toyota, M. Murayama, H. Yoshimura, A. Okamoto,
K. Hirotsu and S. Nagase, Chem. Lett., 1990, 2195.
8 K. Toyota, K. Tashiro and M. Yoshifuji, Chem. Lett., 1991, 2079.
9 K. Toyota, K. Tashiro, M. Yoshifuji and S. Nagase, Bull. Chem. Soc.
Jpn., 1992, 65, 2297.
10 K. Toyota, K. Tashiro, T. Abe and M. Yoshifuji, Heteroatom Chem.,
1994, 5, 549.
11 M. Yoshifuji, Y. Ichikawa, K. Toyota, E. Kasashima and Y. Okamoto,
Chem. Lett., 1997, 87.
12 K. Toyota, K. Tashiro, M. Yoshifuji, I. Miyahara, A. Hayashi and
K. Hirotsu, J. Organomet. Chem., 1992, 431, C35.
13 K. Toyota, K. Masaki, T. Abe and M. Yoshifuji, Chem. Lett., 1995,
221.
14 C. N. Smit, Th. A. van der Knaap and F. Bickelhaupt, Tetrahedron Lett.,
1983, 24, 2031.
15 G. Yu. Mikhailov, I. G. Trostyanskaya, M. A. Kazankova and
I. F. Lutsenko, Zh. Obshch. Khim., 1987, 57, 2636.
Footnotes and References
* E-mail: yoshifj@mail.cc.tohoku.ac.jp
† Selected spectroscopic data (NMR spectra were recorded on either a
Bruker AC200P, a JEOL a-500, or a Bruker AM600 spectrometer): (E,Z)-5:
1H NMR (600 MHz, at 295 K, CDCl3): d 0.92 (6 H, d, J 6.8 Hz, o-CHMe),
1.00 (6 H, d, J 6.8 Hz, o-CHMe), 1.20 (6 H, d, J 6.9 Hz, p-CHMe2), 1.25 (6
H, d, J 6.9 Hz, pA-CHMe2), 1.32 (6 H, d, J 6.8 Hz, oA-CHMe), 1.39 (6 H, d,
J 6.8 Hz, oA-CHMe), 2.75 (1 H, spt, J 6.9 Hz, p-CHMe2), 2.75 (1 H, spt, J
6.9 Hz, pA-CHMe2), 3.21 (2 H, m, o-CHMe2), 3.72 (2 H, m, oA-CHMe2);
31P{1H} NMR (81 MHz, CDCl3): d 168.6, 182.8 (AB, J 17.8 Hz). 8: dark
violet crystals, mp 183 °C (decomp.); 1H NMR (600 MHz, CDCl3): d 1.18
(6 H, d, J 6.6 Hz, o-CHMe), 1.31 (6 H, d, J 6.9 Hz, p-CHMe), 1.31 (12 H,
d, J 6.9 Hz, o-, p-CHMe), 1.41 (6 H, d, J 6.7 Hz, o-CHMe), 1.43 (6 H, d, J
6.6 Hz, o-CHMe), 2.94 (2 H, spt, J 6.9 Hz, p-CHMe2), 4.35 (2 H, br s,
o-CHMe2), 4.46 (2 H, spt, J 6.7 Hz, o-CHMe2); 31P{1H} NMR (81 MHz,
1
CDCl3): d 56.7 (satellite d, JPW 226 Hz); IR (KBr): n/cm21 2033, 1994,
1979, 1923, 1913, 1878, UV–VIS (CH2Cl2): lmax(log e) 254 (sh, 4.87), 272
(sh, 4.75), 321 (4.37), 456 (4.04), 603 nm (sh, 3.51); MS (FAB): m/z 1234
(M+), 1206 (M+– CO). 9: red needles, mp 180–181 °C (decomp.); 1H NMR
(500 MHz, CDCl3): d 1.19 (18 H, s, p-But), 1.65 (18 H, s, o-But), 1.75 (18
H, s, o-But), 4.66 (2 H, m, PNC–CH); 31P{1H} NMR (81 MHz, CDCl3): d
64.6 (satellite d, 1JPW 227.6 Hz); IR (KBr): n/cm21 2033, 1994, 1942, 1900,
1865, 604 cm21; UV–VIS (n-hexane): lmax(log e) 218 (4.88), 236 (4.71),
16 W. Strohmeier and G. Scho¨nauer, Chem. Ber., 1961, 94, 1346.
17 D. Rau and U. Behrens, Angew. Chem., Int. Ed. Engl., 1991, 30, 870.
18 D. Rau and U. Behrens, J. Organomet. Chem., 1993, 454, 151.
19 A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla,
G. Polidori and M. Camalli, J. Appl. Crystallogr., 1994, 27, 435.
Received in Cambridge, UK, 26th September 1997; 7/06963B
28
Chem. Commun., 1998