Cyclic Ketone Inhibitors of Cathepsin K
J ournal of Medicinal Chemistry, 2001, Vol. 44, No. 5 735
J .; Tomaszek, T. A.; Thompson, S. K.; Amegadzie, B. Y.;
Hanning, C. R.; J ones, C., Kurdyla, J . T.; McNulty, D. E.; Drake,
F. H.; Gowen, M.; Levy, M. A. Proteolytic activity of human
osteoclast cathepsin K. Expression, activation and substrate
identification. J . Biol. Chem. 1996, 271, 12517-12524.
(7) (a) Gelb, B. D.; Moissoglu, K.; Zhang, J .; Martignetti, J . A.;
Bro¨mme, D.; Desnick, R. J . Cathepsin K; isolation and charac-
terization of the murine cDNA and genomic sequence, the
homologue of the human pycnodysostosis Gene. Biochem Mol.
Med. 1996, 59, 200-206. (b) J ohnson, M. R.; Polymeropoulos,
M. H.; Vos, H. L.; Oritz de Luna, R. I.; Francomano, C. A. A
nonsense mutation in the cathepsin K gene observed in a family
with pycnodysostosis. Genome Res. 1996, 6, 1050-1055. (c) Gelb,
B. D.; Shi, G.-P.; Chapman, H. A.; Desnick, R. J . Pycnodysostosis,
a lysosomal disease caused by cathepsin K deficiency. Science
1996, 273, 1236-1238.
(8) Inui, T.; Ishibashi, O.; Inaoka, T.; Origane, Y.; Kumegawa, M.;
Kokubo, T.; Yamaura, T. Cathepsin K antisense oligodeoxy-
nucleotide inhibits osteoclastic bone resorption. J . Biol. Chem.
1997, 272, 8109-8112.
(9) (a) Saftig, P.; Hunziker, E.; Wehmeyer, O.; J ones, S.; Boyde, A.;
Rommerskirch, W.; Detlev, J . D.; Schu, P.; von Figura, K.
Impaired osteoclastic bone resorption leads to osteopetrosis in
cathepsin K deficient mice. Proc. Natl. Acad. Sci. U.S.A. 1998,
95, 13453-13458. (b) Gowen, M.; Lazner, F.; Dodds, R.; Kapadia,
R.; Field, J .; Tavaria, M.; Bertoncello, I.; Drake, F.; Zavarselk,
S.; Tellis, I.; Hertzog, P.; Debouck, C.; Kola, I. Cathepsin K
knockout mice develop osteopetrosis due to a deficit in matrix
degradation but not demineralization. J . Bone Miner. Res. 1999,
14, 1654-1663.
(10) Reviews on cysteine protease inhibition: (a) Rasnick, D. Small
synthetic inhibitors of cysteine proteases. Perspect. Drug Dis-
covery Des. 1996, 6, 47-63. (b) Otto, H.-H.; Schirmeister, T.
Cysteine proteases and their inhibitors. Chem. Rev. 1997, 97,
133-171. (c) Leung, D.; Abbenante, G.; Fairle, D. P. Protease
inhibitors: current status and future prospects. J . Med. Chem.
2000, 43, 305-341.
(11) Matsumoto, K.; Mizoue, K.; Kitamura, K.; Tse, W.-C.; Huber,
C. P.; Ishida, T. Structural basis of the inhibition of cysteine
proteases by E-64 and its derivatives. Biopolymers 1999, 51, 99-
107.
(12) (a) Smith, R. A.; Copp, L. J .; Coles, P. J .; Pauls, H. W.; Robinson,
V. J .; Spencer, R. W.; Heard, S. B.; Krantz, A. New inhibitors of
cysteine proteases. Peptidyl acyloxymethyl ketones and the
quiescent nucleofuge strategy. J . Am. Chem. Soc. 1988, 110,
4429-04431. (b) Krantz, A. Some thoughts on enzyme inhibition
and the quiescent affinity label concept. Adv. Med. Chem. 1992,
1, 235-261. (c) Krantz, A. Peptidyl(acyloxy)methanes as quies-
cent affinity labels for cysteine proteases. Methods Enzymol.
1994, 244, 656-671.
(13) (a) Palmer, J . T.; Rasnick, D.; Klaus, J . L.; Bro¨mme, D. Vinyl
sulfones as mechanism-based cysteine protease inhibitors. J .
Med. Chem. 1995, 38, 3193-3196. (b) Bro¨mme, D.; Klaus, J . L.;
Okamoto, K.; Rasnick, D.; Palmer, J . T. Peptidyl vinyl sul-
phones: a new class of potent and selective cysteine protease
inhibitors. Biochem. J . 1996, 315, 85-89. (c) McGrath, M. E.;
Klaus, J . L.; Barnes, M. G.; Bro¨mme, D. Crystal structure of
human cathepsin K complexed with a potent inhibitor. Nat.
Struct. Biol. 1997, 4, 105-109.
(16) (a) Ando, R.; Morinaka, Y. A new class of proteinase inhibitor.
Cyclopropenone-containing inhibitor of papain. J . Am. Chem.
Soc. 1993, 115, 1174-1175. (b) Ando, R.; Sakaki, T.; Morinaka,
Y.; Takahashi, C.; Tamao, Y.; Yoshii, N.; Katayama, S.; Saito,
K.; Tokuyama, H.; Isaka, M.; Nakamura, E. Cyclopropeneone-
containing cysteine proteinase inhibitors. Synthesis and enzyme
inhibitory activities. Bioorg. Med. Chem. 1999, 7, 571-579.
(17) (a) Moon, J . B.; Coleman, R. S.; Hanzlik, R. P. Reversible covalent
inhibition of papain by a peptide nitrile. 13C NMR evidence for
a thioimidate ester adduct. J . Am. Chem. Soc. 1986, 108, 1350-
1351. (b) Brisson, J .-R.; Carey, P. R.; Storer, A. C.; Benzoyl-
amidoacetonitrile is bound as a thioimidate in the active site of
papain. J . Biol. Chem. 1986, 261, 9087-9089. (c) Liang, T.-C.;
Abeles, R. H. Inhibition of papain by nitriles: mechanistic
studies using NMR and kinetic measurements. Arch. Biochem.
Biophys. 1987, 252, 626-634.
(18) (a) Hu, L.-Y.; Abeles, R. H. Inhibition of cathepsin B and papain
by peptidyl R-keto esters, R-keto amides R-diketones and R-keto
acids. Arch. Biochem. Biophys. 1990, 281, 271-274. (b) Li, Z.;
Patil, G. S.; Golubski, Z. E.; Hori, H.; Tehrani, K.; Foreman, J .
E.; Eveleth, D. D.; Bartus, R. T.; Powers, J . C. Peptide R-keto
ester, R-keto amide, and R-keto acid inhibitors of calpains and
other cysteine proteases. J . Med. Chem. 1993, 36, 3472-3480.
(c) Harbeson, S. L.; Abelleira, S. M.; Akiyama, A.; Barrett III,
R.; Carroll R. M. Straub, J . A. Tkacz, J . N.; Wu, C.; Musso, G.
F. Stereospecific synthesis of peptidyl R-keto amides as inhibitors
of calpain. J . Med. Chem. 1994, 37, 2918-2929.
(19) (a) Majalli, A. M. M.; Chapman, K. T.; MacCoss, M.; Thornberry,
N. A.; Peterson, E. P. Activated ketones as potent reversible
inhibitors of interleukin-1â converting enzyme. Bioorg. Med.
Chem. Lett. 1994, 4, 1965-1968. (b) Yamashita, D. S.; Smith,
W. W.; Zhao, B.; J anson, C. A.; Tomaszek, T. A.; Bossard, M.
A.; Levy, M. A.; Oh, H.-J .; Carr, T. J .; Thompson, S. T.; Ijames,
C. F.; Carr, S. A.; McQueney, M.; D′Alessio, K. J .; Amegadzie,
B. Y.; Hanning, C. R.; Abdel-Meguid, S.; DesJ arlais, R. L.;
Gleason, J . G.; Veber, D. F. Structure and design of potent and
selective cathepsin K inhibitors. J . Am. Chem. Soc. 1997, 119,
11351-11352. (c) DesJ arlais, R. L.; Yamashita, D. S.; Oh, H.-
J .; Uzinskas, I. N.; Erhard, K. F.; Allen, A. C.; Haltwanger, R.
C.; Zhao, B.; Smith, W. W.; Abdel-Meguid, S. S.; D’Allesio, K.;
J anson, C. A.; McQueney, M. S.; Tomaszek, T. A.; Levy, M. A.;
Veber, D. F. Use of X-ray cocrystal structures and molecular
modeling to design potent and selective non-peptide inhibitors
of cathepsin K. J . Am. Chem. Soc. 1998, 35, 9114-9115.
(20) Amos, H. E.; Park, B. K. In Immunotoxicology and Immuno-
pharmacology; Raven Press: New York, 1985; pp 207-228.
(21) Marquis, R. W.; Ru, Y.; Yamashita, D. S.; Oh, H.-J .; Yen, J .;
Thompson, S. K.; Carr, T. J .; Levy, M. A.; Tomaszek, T. A.;
Ijames, C. F.; Smith, W. W.; Zhao, B.; J anson, C. A.; Abdel-
Meguid, S. S.; D’Alessio, K. J .; McQueney, M. S.; Veber, D. F.
Potent dipeptidyl ketone inhibitors of the cysteine protease
cathepsin K. Bioorg. Med. Chem. 1999, 7, 581-588.
(22) (a) J ones, D. M.; Atrash, B.; Teger-Nilsson, A.-C.; Gyzander, E.;
Deinum, J .; Szelke, M.; Design and synthesis of thrombin
inhibitors. Lett. Pept. Sci. 1995, 2, 147-154. (b) J ones, M. D.;
Atrash, B.; Teger-Nilsson, A. C.; Gyzander, E.; Deinum, J .;
Szelke, M. Inhibitors of thrombin containing arginine ketone
derivatives. Proc. Eur. Pept. Symp. 23rd 1995, 899-900. (c)
J ones, D. M.; Atrash, B.; Ryder, H.; Teger-Nilsson, A.-C.;
Gyzander, E.; Szelke, M. Thrombin inhibitors based on ketone
derivatives of arginine and lysine. J . Enzyme Inhib. 1995, 9, 43-
60.
(14) (a) Hanzlik, R. P.; Thompson, S. A. Vinylogous amino acid
esters: a new class of inactivators for thiol proteases. J . Med.
Chem. 1984, 27, 711-712. (b) Matthews, D. A.; Dragovich, P.
S.; Webber, S. E.; Fuhrman, S. A.; Patick, A. K.; Kalman, L. S.;
Hendrickson, T. F.; Love, R. A.; Pins, T. J .; Marakovits, J . T.;
Zhou, R.; Tikhe, J .; Ford, C. E.; Meador, J . W.; Ferre, R. A.;
Brown, E. L.; Binford, S. L.; Brothers, M. A.; DeLisle, D. M.;
Worland, S. T. Structure-assisted design of mechanism-based
irreversible inhibitors of human rhinovirus 3C protease with
potent antiviral activity against multiple rhinovirus serotypes.
Proc. Natl. Acad. Sci. U.S.A.. 1999, 96, 11000-11007 and
references therein.
(23) The nomenclature of Schecter and Berger: Schecter, I.; Berger,
A. On the size of the active site in proteases I. Papain. Biochem.
Biophys. Res. Commun. 1967, 27, 157-162.
(24) The following numbering system has been used:
(15) Recent examples include: (a) Votta, B. J .; Levy, M. A.; Badger,
A.; Bradbeer, J .; Dodds, R. A.; J ames, I. E.; Thompson, S.;
Bossard, M. J .; Carr, T.; Conner, J . R.; Tomaszek, T. A.;
Szewczuk, L.; Drake, F. H.; Veber, D. F.; Gowen, M. Peptide
aldehyde inhibitors of cathepsin K inhibit bone resorption both
in vitro and in vivo. J . Bone Mineral Res. 1997, 12, 1396-1406.
(b) Yasuma, T.; Oi, S.; Choh, N.; Nomura, T.; Furuyama, N.;
Nishimura, A.; Fujisawa, Y.; Sohda, T. Synthesis of peptide
aldehyde derivatives as selective inhibitors of human cathepsin
L and their inhibitory effect on bone resorption. J . Med. Chem.
1998, 41, 4301-4308. (c) Karanewsky, D. S.; Bai, X.; Linton, S.
D.; Krebs, J . F.; Wu, J .; Pham, B.; Tomaselli, K. J . Conforma-
tionally constrained inhibitors of caspase-1 (interleukin-1â
converting enzyme) and of the human CED-3 homologue
caspase-3 (CPP32, apopain). Bioorg. Med. Chem. Lett. 1998, 8,
2757-2762.
(25) Marquis, R. W.; Yamashita, D. S.; Ru, Y.; LoCastro, S. M.; Oh,
H.-J .; Erhard, K. F.; DesJ arlais, R. L.; Head, M. S.; Smith, W.
W.; Zhao, B.; J anson, C. A.; Abdel-Meguid, S. S.; Tomaszek, T.
A.; Levy, M. A.; Veber, D. F. Conformationally constrained 1,3-
diamino ketones: A series of potent and selective inhibitors of
the cysteine protease cathepsin K. J . Med. Chem. 1998, 41,
3563-3567.
(26) For a discussion regarding the regioselective opening of 3,4-
epoxytetrahydropyrans, see: Berti, G.; Catelani, G.; Ferretti, M.;
Monti, L. Regio- and stereoselectivity of the three-membered ring
opening of 3,4-epoxytetrahydropyrans and of the corresponding
epibromonium ions. Tetrahedron 1974, 30, 4013-4020.