Communication
ChemComm
Notes and references
1 (a) T. Kondo, et al., Chem. Rev., 2000, 100, 3205; (b) I. P. Beletskaya,
et al., Chem. Rev., 2011, 111, 1596; (c) C. Shen, et al., Chem. Soc. Rev.,
2015, 44, 291; (d) M. Feng, et al., Curr. Top. Med. Chem., 2016,
16, 1200; (e) P. Devendar, et al., Top. Curr. Chem., 2017, 375, 82;
( f ) E. K. Lee, et al., Adv. Mater., 2017, 29, 1703638; (g) K. A. Scott,
et al., Top. Curr. Chem., 2018, 376, 5.
2 (a) N. Della Ca’, et al., Acc. Chem. Res., 2016, 49, 1389; (b) J. Ye, et al.,
Nat. Chem., 2015, 7, 863; (c) H. Shi, et al., J. Am. Chem. Soc., 2015,
137, 3775; (d) Q. Gao, et al., J. Am. Chem. Soc., 2019, 141, 15986;
(e) J. Wang, et al., Chem. Rev., 2019, 119, 7478; ( f ) J. Wang, et al.,
Chem, 2020, 6, 2097.
3 (a) Catalytic Cascade Reactions, ed. P.-F. Xu and W. Wang, Wiley-
VCH, Weinheim, 2013, For selected reviews; (b) M. Murai, et al.,
Synthesis, 2019, 40; (c) K. Ghosh, et al., Chem. Rec., 2020, 20, 1017;
(d) N. Y. S. Lam, et al., Angew. Chem., Int. Ed., 2021, 60, 2.
4 (a) J. Wencel-Delord, et al., Nat. Chem., 2013, 5, 369; (b) S. Tani, et al.,
Chem. Sci., 2014, 5, 123; (c) Y. Segawa, et al., Angew. Chem., Int. Ed.,
2015, 54, 66; (d) Y. Geng, et al., J. Mater. Chem., 2001, 11, 1634;
(e) S. Suzuki, et al., Nat. Chem., 2015, 7, 227–233; ( f ) Y. Koga, et al.,
Science, 2018, 359, 435; (g) J. Yin, et al., Angew. Chem., Int. Ed., 2019,
58, 302.
5 (a) X. Li, et al., ACS Catal., 2019, 9, 8749. For selected examples on
imidate esters assisted C–H activation: (b) D.-G. Yu, et al., J. Am.
Chem. Soc., 2013, 135, 8802; (c) X. Yang, et al., Adv. Synth. Catal.,
2016, 358, 2436; (d) X. Wang, et al., Org. Lett., 2016, 18, 2150;
(e) N. Lv, et al., Org. Lett., 2017, 19, 2588; ( f ) X. Wu, et al., Org.
Lett., 2018, 20, 1396; (g) X. Wang, et al., Org. Lett., 2016, 18, 2090;
(h) J. Park, et al., Angew. Chem., Int. Ed., 2017, 56, 4256; (i) B. Jiang,
et al., Org. Lett., 2018, 20, 6573; ( j) S. Yu, et al., Angew. Chem., Int.
Ed., 2016, 55, 8696.
6 For examples: (a) L. D. Tran, et al., J. Am. Chem. Soc., 2012, 134, 18237;
(b) Y. Yang, et al., Chem. – Eur. J., 2014, 20, 416; (c) X. Li, et al., Chem. –
Eur. J., 2014, 20, 7911; (d) C. Lin, et al., Org. Lett., 2015, 17, 1328;
(e) X. Ye, et al., Chem. Commun., 2015, 51, 7863; ( f ) S.-Y. Yan, et al.,
Chem. Commun., 2015, 51, 4069; (g) K. Yang, et al., Chem. Commun.,
2015, 51, 3582; (h) J. Wen, et al., J. Org. Chem., 2015, 80, 10457;
(i) C. Liu, et al., ACS Catal., 2019, 9, 8910; ( j) Y.-S. Kang, et al., Angew.
Chem., Int. Ed., 2019, 58, 9099; (k) I. P. Beletskaya, et al., Chem. Rev.,
2011, 111, 1596; (l) C. Shen, et al., Chem. Soc. Rev., 2015, 44, 291;
(m) W. Ma, et al., Org. Chem. Front., 2020, 7, 1022; (n) T. Gensch, et al.,
Angew. Chem., Int. Ed., 2016, 55, 11287.
7 (a) D. A. Colby, et al., Chem. Rev., 2010, 110, 624; (b) T. Satoh, et al.,
Chem. – Eur. J., 2010, 16, 11212; (c) G. Song, et al., Acc. Chem. Res.,
2015, 48, 1007; (d) B. Ye, et al., Acc. Chem. Res., 2015, 48, 1308;
(e) T. Gensch, et al., Chem. Soc. Rev., 2016, 45, 2900; ( f ) T. Piou,
et al., Acc. Chem. Res., 2018, 51, 170; (g) P. Gandeepan, et al., Chem.
Rev., 2019, 119, 2192; (h) S. Rej, et al., Angew. Chem., Int. Ed., 2019,
58, 8304; (i) X. Li, et al., ChemCatChem, 2020, 12, 2358.
Scheme 6 Proposed mechanism.
Inspired by the related precedent literature and the experi-
mental observations, a tentative mechanism was proposed
(Scheme 6). First, with the assistance of MPAA,6,14 the C–H
activation of 1a takes place to give rhodacycle species A. A
subsequent oxidative Heck reaction leads to intermediate C or
C0 via second C–H activation, which facilitates further reaction
with sulfide species D generated from disulfide 2, affording key
intermediate E. Finally, the desired multiple C–H activation
products 12 or 14 are obtained via C–S bond formation, and the
re-oxidation of the released Rh(I) species by Ag(I) or Cu(II)
oxidant. With key intermediate C, the dual cross-dehydrogenative
coupling of the imidate ester with arene and terminal olefins can
also proceed with the assistance of PivOH and the oxidant, affording
multiple-functionalized products 15.
Notably, when disulfides 2 were subjected into the reaction
prior to terminal olefins 11, C–H sulfenylation occurred affording
4. However, the coordinative saturation of the imidate and
thioether group to Rh(III) led to the deactivation of the Rh(III)
catalyst, and thus, no second C–H activation proceeded.
In summary, by the judicious choice of versatile imidate
esters as the key directing groups and through well tuning of
the catalytic systems, sequential C–H activation was developed,
leading to polyfunctional arenes. This transformation enabled
the multiple C–H modification of pharmaceuticals and advanced
material analogues, and the concise construction of biologically
active molecules. Further endeavor towards the expedient
delivery of functionalized pharmaceuticals and materials via
sequential C–H activation is underway.
8 (a) M. Pawliczek, et al., Org. Lett., 2015, 17, 1716; (b) Y. Zhou, et al.,
Chem. Commun., 2019, 55, 10265.
9 (a) P. Gandeepan, et al., Chem. – Asian J., 2015, 10, 824; (b) Y. Ping,
et al., Adv. Synth. Catal., 2017, 359, 3274. For examples: (c) D. Leow,
et al., Nature, 2012, 486, 518; (d) Y.-F. Yang, et al., J. Am. Chem. Soc.,
2014, 136, 344.
10 (a) Y.-J. Liu, et al., Nature, 2014, 515, 389; (b) H. Wang, et al., Angew.
Chem., Int. Ed., 2016, 55, 10386; (c) M. Shang, et al., Angew. Chem.,
Int. Ed., 2017, 56, 5317; (d) L.-L. Xu, et al., Chem. Sci., 2018, 9, 5160.
11 For simultaneous construction of C–C and C–S bonds using Catel-
lani reaction: (a) F. Sun, et al., J. Am. Chem. Soc., 2016, 138, 7456;
(b) R. Li, et al., Nat. Commun., 2019, 10, 3555. For a recent example
on intramolecular C–H olefination and thiolation: (c) J. Lin, et al.,
Org. Lett., 2021, 23, 1194.
We are grateful for the financial support by the National
Natural Science Foundation of China (No. 22071034, 21602032)
and the Science and Technology Planning of Guangdong Pro-
vince (No. 2019A050510042).
12 (a) S. Rakshit, et al., J. Am. Chem. Soc., 2011, 133, 2350; (b) J. Kim,
et al., J. Am. Chem. Soc., 2015, 137, 13448.
13 For selected reviews: (a) C.-J. Li, Acc. Chem. Res., 2009, 42, 335;
(b) C. Liu, et al., Chem. Rev., 2015, 115(22), 12138; (c) Y. Yang, et al.,
Chem. Rev., 2017, 117, 8787.
14 (a) Y.-F. Yang, et al., Acc. Chem. Res., 2017, 50, 2853; (b) Q. Shao,
et al., Acc. Chem. Res., 2020, 53, 833.
Conflicts of interest
There are no conflicts to declare.
Chem. Commun.
This journal is © The Royal Society of Chemistry 2021