C O M M U N I C A T I O N S
Table 2. Enantioselective Allylic Substitution of Branched
Electrophiles
The isomerization and substitution sequence was also suitable
for the synthesis of allyl aryl ethers and allylic malonates. These
etherification and alkylation reactions catalyzed by Ir complexes
of L1 formed higher ratios of 4 to 5 than reactions catalyzed by Ir
complexes of L3. Carbonate 1a underwent the combination of
isomerization and substitution with lithium phenoxide (entry 12)
to form the branched allyl aryl ether in 76% yield, 9:1 regioselec-
tivity, and 94% ee with the catalyst containing L1. Good enantio-
selectivity was also observed for reactions conducted with L3. The
isomerization of 1a, followed by reaction with sodium dimethyl-
malonate (entry 13) in the presence of the iridium catalyst containing
ligand L1, also formed the corresponding branched allylic malonate
with high regioselectivity and enantioselectivity.
In conclusion, we have developed a catalytic protocol for the
conversion of readily accessible branched aromatic allylic esters
to branched allylic products in good yield with high regio- and
enantioselectivity with a broad range of nucleophiles. This proce-
dure is based on a complementary, sequential use of allylpalladium
and allyliridium chemistry, the palladium-catalyzed reaction for
isomerization, and the iridium-catalyzed reaction for enantioselec-
tive C-N, C-O, and C-C bond formation.
yieldb
eed
(%)
entry
R, X (1)
Nu (3)
L
(%)
4/5c
1
2
3
4
C6H5, OCO2Me (1a) PhCH2NH2 (3a)
C6H5, OCO2Me (1a) morpholine (3b)
C6H5, OCO2Me (1a) PhNH2 (3c)
L3 76 98/2 93
L3 89 98/2 94
L3 83 98/2 94
L2 81 99/1 82
L3 63 99/1 82
L2 82 99/1 95.5
2-FC6H4
morpholine (3b)
morpholine (3b)
morpholine (3b)
morpholine (3b)
PhCH2NH2 (3a)
OCO2Me (1b)
3-OMeC6H4,
OCO2Me (1c)
4-CF3C6H4,
OCO2Me (1d)
4-ClC6H4,
5
6
7
L2 72 99/1 94
L2 83 99/1 96
OCO2Me (1e)
8e-g 4-OMeC6H4
L1 75 99/1 87
L2 83 99/1 94
L3 77 99/1 86
L3 79 98/2 93
L2 57 98/2 88
OAc (1f)
9e-g 2-thienyl, OAc (1g) PhCH2NH2 (3a)
10g,h CH3CHdCH,
OCO2Me (1h)
PhCH2NH2 (3a)
11g,i (CH3)2CHCHdCH, PhCH2NH2 (3a)
OCO2Me (1i)
L2 70 96/4 88
12j,k C6H5
LiOPh (3d)
L1 76 90/10 94
L3 62 85/15 92
OCO2Me (1a)
C6H5
OCO2Me (1a)
13j
NaCH(CO2Me)2 (3f) L1 77 97/3 94
L3 72 80/20 91
Acknowledgment. We thank the NSF for support of this work.
A.L. is a recipient of the FWF Austria Schro¨dinger Fellowship.
We also thank Boehringer Ingelheim for an unrestricted gift, and
Johnson-Matthey for iridium chloride.
Supporting Information Available: Full experimental section. This
a All reactions were carried out with 1 mmol of 1 and 1.2 mmol of 3 in
THF (1.0 mL) at room temperature in the presence of 0.002 mmol Pd(dba)2,
0.004 mmol PPh3, 0.015 mmol [(COD)IrCl]2, and 0.030 mmol of L1-L3
unless otherwise noted. b Average of isolated yields from two runs.
c Determined by 1H NMR spectra of crude reaction mixtures. d Determined
by chiral HPLC. e Isomerization was performed at 60 °C. f EtOH (0.4 mL)
was used as cosolvent. g [(COD)IrCl]2 (0.020 mmol) and L1-L3 (0.040
mmol) were used. h Pd(dba)2 (0.4%) and PPh3 (0.8%) were used for
isomerization. i Pd(dba)2 (0.3%) and PPh3 (0.6%) were used for isomer-
ization. j THF (2.0 mL) was used. k 3d (2 mmol) was used.
References
(1) (a) Wasilke, J.-C.; Obrey, S.; Baker, R. T.; Bazan, G. C. Chem. ReV. 2005,
105, 1001. (b) Fogg, D. E.; dos Santos, E. N. Coord. Chem. ReV. 2004,
248, 2365.
(2) For seminal work on iridium-catalyzed allylic substitutions with achiral
catalysts, see refs 3a,b.
Scheme 2
(3) (a) Takeuchi, R.; Kashio, M. Angew. Chem., Int. Ed. Engl. 1997, 36, 263.
(b) Takeuchi, R.; Ue, N.; Tanabe, K.; Yamashita, K.; Shiga, N. J. Am.
Chem. Soc. 2001, 123, 9525. (c) Ohmura, T.; Hartwig, J. F. J. Am. Chem.
Soc. 2002, 124, 15164. (d) Lopez, F.; Ohmura, T.; Hartwig, J. F. J. Am.
Chem. Soc. 2003, 125, 3426. (e) Leitner, A.; Shu, C.; Hartwig, J. F. Proc.
Natl. Acad. Sci. U.S.A. 2004, 101, 5830. (f) Shu, C.; Hartwig, J. F. Angew.
Chem., Int. Ed. 2004, 43, 4794. (g) Shu, C.; Leitner, A.; Hartwig, J. F.
Angew. Chem., Int. Ed. 2004, 43, 4797. (h) Bartels, B.; Helmchen, G.
Chem. Commun. 1999, 741. (i) Lipowsky, G.; Miller, N.; Helmchen, G.
Angew. Chem., Int. Ed. 2004, 43, 4595. (j) Weihofen, R.; Dahnz, A.;
Tverskoy, O.; Helmchen, G. Chem. Commun. 2005, 3541.
(4) Kiener, C. A.; Shu, C.; Incarvito, C.; Hartwig, J. F. J. Am. Chem. Soc.
2003, 125, 14272.
(5) Leitner, A.; Shu, C.; Hartwig, J. F. Org. Lett. 2005, 7, 1093.
(6) Leitner, A.; Shekhar, S.; Pouy, J. M. J. Am. Chem. Soc. 2005, 127, 15506.
(7) Bartels, B.; Garcia-Yebra, C.; Rominger, F.; Helmchen, G. Eur. J. Inorg.
Chem. 2002, 2569.
(8) Welter, C.; Dahnz, A.; Brunner, B.; Streiff, S.; Dubon, P.; Helmchen, G.
Org. Lett. 2005, 7, 1239.
(9) Polet, D.; Alexakis, A.; Tissot-Croset, K.; Corminboeuf, C.; Ditrich, K.
Chem. Eur. J. 2006, 12, 3596.
(10) (a) Belda, O.; Moberg, C. Acc. Chem. Res. 2004, 37, 159. (b) Trost, B.
M.; Hachiya, I. J. Am. Chem. Soc. 1998, 120, 1104. (c) Malkov, A. V.;
Spoor, P.; Viander, V.; Kocovsky, P. Tetrahedron Lett. 2001, 42, 509.
(d) Glorius, F.; Neuburger, M.; Pfaltz, A. HelV. Chim. Acta 2001, 84,
3178.
(11) (a) Trost, B. M.; Hung, M.-H. J. Am. Chem. Soc. 1983, 105, 7757. (b)
Lloyd-Jones, G. C.; Pfaltz, A. Angew. Chem., Int. Ed. Engl. 1995, 34,
462. (c) Lehmann, J.; Lloyd-Jones, G. C. Tetrahedron 1995, 51, 8863.
(12) (a) Hayashi, T.; Kishi, K.; Yamamoto, A.; Ito, Y. Tetrahedron Lett. 1990,
31, 1743. (b) Pretot, R.; Pfaltz, A. Angew. Chem., Int. Ed. 1998, 37, 323.
(c) Pamies, O.; Dieguez, M.; Claver, C. J. Am. Chem. Soc. 2005, 127,
3646. (d) Dieguez, M.; Pamies, O.; Claver, C. J. Org. Chem. 2005, 70,
3363. (e) Hayashi, T.; Okada, A.; Suzuka, T.; Kawatsura, M. Org. Lett.
2003, 5, 1713.
(13) You, S.-L.; Zhu, X.-Z.; Luo, Y.-M.; Hou, X.-L.; Dai, L.-X. J. Am. Chem.
Soc. 2001, 123, 7471.
(14) Amatore, C.; Jutand, A.; Mensah, L.; Meyer, G.; Fiaud, J.-C.; Legros,
J.-T. Eur. J. Org. Chem. 2006, 1185.
was used as ligand (entries 4-7). The Pd-catalyzed isomerization
of electron-poor, branched allylic carbonates (1b-e) to the corre-
sponding linear carbonates was slightly slower than the isomer-
ization of the neutral carbonate 1a. However, the allylic amination
product was obtained in 6 h from the isomerized linear carbonates.
Reactions of electron-rich cinnamyl esters were initiated with
acetate, rather than carbonate, leaving groups because the electron-
rich carbonates were unstable toward silica gel purification.
Although the Pd-catalyzed isomerization of electron-rich branched
allylic acetates (1f,g) was slower (6-12 h at 60 °C) than the
isomerization of the allylic carbonates (1a-e), the subsequent allylic
amine products were obtained in good yields with high regio- and
enantioselectivities. For example, the product from reaction of
p-methoxy-substituted 1f and benzylamine was obtained in 94.4%
ee when L2 was used as ligand (entry 8). The product from reaction
of thienyl derivative 1g with benzylamine in the presence of the
catalyst containing L3 formed the allylic amine product in 93% ee
(entry 9). Dienyl carbonates 1h,i underwent the catalytic isomer-
ization and allylic substitution to give optically active amines in
moderate yield and good enantioselectivities (entries 10 and 11).
(15) (a) Overman, L. E.; Knoll, F. M. Tetrahedron Lett. 1979, 20, 321. (b)
Overman, L. E.; Ziller, J.; Zipp, G. G. J. Org. Chem. 1997, 62, 1449. (c)
Overman, L. E.; Owen, C. E.; Pavan, M. M.; Richards, C. J. Org. Lett.
2003, 5, 1809.
JA0644273
9
J. AM. CHEM. SOC. VOL. 128, NO. 36, 2006 11771