‡ 1H NMR (250 MHz, CDCl3) d 1.0 (2 H, br). 1.9 (2 H, br), 2.0 (3 H, br),
4.1 (2 H, br); 13C NMR (62.9 MHz, CDCl3) d 20.3, 21.6, 25.1, 67.8, 171.1;
119Sn NMR (74.6 MHz, CDCl3) d 2465 (0.5 Sn), 2490 (0.5 Sn).
R3OH
(R2
)3SnR1
R1Sn(OR3)3
– R2
H
Scheme 3 Reagents and conditions: cyclohexane, 60 °C, 16 h; the
compounds were purified by distillation
1 C. J. Brinker and G. W. Scherer, Sol–Gel Science, Academic Press,
London, 1990.
2 H. I. J. Wuang, B. Orler and G. L. Wilkes, Macromolecules, 1987, 20,
1322.
3 B. M. Novak, Adv. Mater., 1993, 5, 422.
4 H. Schmidt and B. Seiferling, Mater. Res. Soc. Symp. Proc., 1986, 73,
739; C. Sanchez and F. Ribot, New J. Chem., 1994, 18, 1007;
U. Schubert, N. Hu¨sing and A. Lorenz, Chem. Mater., 1995, 7, 2010;
D. A. Loy and K. J. Shea, Chem. Rev., 1995, 95, 1431.
5 F. Ribot, F. Banse, C. Sanchez, M. Lahcini and B. Jousseaume, J. Sol–
Gel Sci. Technol., 1997, 8, 529; F. Ribot, F. Banse and C. Sanchez,
Mater. Res. Soc. Symp. Proc., 1994, 346, 121.
Table 2 Preparation of trialkoxyorganotins
R1
R2
R3
Yield (%)a
Bu
Bu
Bu
Me
Bu
Me
Me
Me
Ph
Bus
55
76
80
50
59
Bui
CH2Ph
Bus
Ph
Pri
6 B. Jousseaume, M. Lahcini, M.-C. Rascle, F. Ribot and C. Sanchez,
Organometallics, 1995, 14, 685.
7 I. M. Thomas, US Pat., 3946056, 1976.
was the only previous example of this reaction.15 When primary
or secondary alcohols were used, cleavage of alkynyl groups
occurred readily upon moderate heating. Tertiary alcohols were
not acidic enough to be useful. In this way, trialkoxymethyl- and
trialkoxybutyl-tins16 were prepared in good yields and results
are presented in Table 2. The results show the higher reactivity
of trialkynylorganotins compared to organosilanes. Indeed, Si–
alkynyl bonds can be cleaved by alcohol molecules, but only at
80 °C and in the presence of F2 as catalyst.17
These results show that alkynyl derivatives of tin can be used
instead of the corresponding alkoxides in sol–gel process and
that these alkynyl derivatives are also good precursors of
alkoxides. Moreover, these new precursors offer wide scope of
opportunities for the introduction of a variety of organic
functionalities inside tin oxide based hybrid materials.
8 A. G. Davies, L. Smith and P. J. Smith, J. Organomet. Chem., 1972, 39,
279; D. P. Gaur, G. Sivastrata and R. C. Mehrotra, J. Organomet.
Chem., 1973, 63, 221.
9 W. Neumann and F. G. Kleiner, Tetrahedron Lett., 1964, 5, 3779;
M. W. Logue, J. Org. Chem., 1982, 47, 2549; B. Jousseaume and
P. Villeneuve, Tetrahedron, 1989, 45, 1145.
10 B. Wrackmeyer, G. Kehr, D. Wettinger and W. Milius, Main Group
Met. Chem., 1993, 16, 445.
11 P. Jaumier, PhD Thesis, University Bordeaux 1, 1997.
12 H. Puff and H. Reuter, J. Organomet. Chem., 1989, 373, 173;
D. Dakternieks, H. Zhu, E. R. T. Tiekink and R. Colton, J. Organomet.
Chem., 1994, 476, 33.
13 F. Banse, F. Ribot, P. Tole´dano, J. Maquet and C. Sanchez, Inorg.
Chem., 1995, 34, 6371.
14 M. Biesemans, R. Willem, S. Damoun, P. Geerlings, M. Lahcini,
P. Jaumier and B. Jousseaume, Organometallics, 1996, 15, 2237.
15 V. S. Zavgorodnii, B. I. Ionin and A. A. Petrov, J. Gen. Chem. USSR,
1967, 37, 898.
16 J. D. Kennedy, W. McFarlane, P. J. Smith, R. F. M. White and L. Smith,
J. Chem. Soc., Perkin Trans. 2, 1973, 1785.
17 R. J. P. Corriu, J. J. E. Moreau, P. Thepot and M. Wong Chi Man, Chem.
Mater., 1996, 8, 100.
Notes and References
* E-mail: b.jousseaume@lcoo.u-bordeaux.fr
†
119Sn NMR [74.6 MHz, CDCl3, 2J (119,117Sn–119Sn)/Hz] 2a d 2282.2 (J
380, 177), 2449.0 (J 380, 205); 2b d 2280.0, 2470.4 (unresolved
satellites); 2c d 2280.7 (J 373, 178), 2443.7 (J 373, 207); 2d d 2282.2,
2449.0 (unresolved satellites).
Received in Cambridge, UK, 9th October 1997; 7/07298H
370
Chem. Commun., 1998