J. Am. Chem. Soc. 1998, 120, 3257-3258
Synthesis and Structure of the Stable Paramagnetic
3257
Cyclopentadienyl Polyhydride Complexes
[Cp*MH3(dppe)]+ (M ) Mo, W): Stronger M-H
Bonds upon Oxidation
Brett Pleune,1a Rinaldo Poli,*,1b and James C. Fettinger1a
Department of Chemistry and Biochemistry
UniVersity of Maryland
College Park, Maryland 20742
Laboratoire de Synthe`se et d'Electrosynthe`se
Organome´tallique, Faculte´ des Sciences “Gabriel”
UniVersite´ de Bourgogne
6 BouleVard Gabriel, 21100 Dijon, France
ReceiVed August 22, 1997
Transition-metal polyhydride derivatives have been at the focus
of much experimental2 and theoretical3 work, especially dealing
with their high fluxionality4 and their structure type (i.e. classical
vs nonclassical).5 There is scarce information on how these
properties change upon oxidation to the 17-electron configuration
because of the paucity of stable complexes. Only a few
monohydride complexes have have been isolated,6 as facile
decomposition via deprotonation or disproportionation pathways
usually occurs.7 Isolable paramagnetic polyhydrides are even less
Figure 1. EPR spectra of complexes [Cp*MX3(dppe)]+ (M ) Mo, W;
X ) H, D). Solvent ) THF. The starred peak in the spectrum of [2-d3]+
is due to an impurity.
common. We are only aware of TaCl2H2L4 (L ) PMe3 or L2 )
- 6h
dmpe)6g and [WCl2H2(PMe3)4]+BF4
,
as well characterized,
unambiguous examples.8 Chemical reactivity studies of such
species are also rare.9 When these compounds are obtained by
one-electron oxidation of neutral precursors, H2 reductive elimina-
tion is facilitated by the decreased metal p basicity10 and adds to
the array of decomposition pathways available.11
We wish to report here the new complexes [Cp*MH3(dppe)]-
[PF6] (M ) Mo, ([1]PF6), W ([2]PF6)), which are accessible by
1-electron oxidation of the parent complexes 1 and 2 with FcPF6.12
Cyclovoltammetric studies show a reversible oxidation for both
1 and 2 in THF (-0.75 and -0.88 V vs Fc/Fc+, respectively).
Complex [1]+ exhibits a triplet of quartets in the EPR spectrum
(g ) 1.989, aP ) 28.9 G, aH ) 11.8 G; see Figure 1) consistent
with coupling to three equivalent H and two equivalent P ligands.
Chemical oxidation of Cp*MoD3(dppe) leads to the formation
of [1]+-d3, which is characterized by an EPR broad triplet (g )
1.991, aP ) 28.9 G; see Figure 1). IR investigations13 show the
expected isotope shift upon deuteration, and a 10-20 cm-1 blue
shift upon oxidation. From simple theory, the vibrational
frequency correlates directly with the bond energy.14 Thus, the
IR data indicate that the M-H/D bonds are stronger in the
oxidized materials, consistent with expectations on the basis of a
Mδ+-Hδ- bond polarity. Previous IR studies on Cp*FeH(dppe)
(1) (a) University of Maryland. (b) Universite´ de Bourgogne.
(2) (a) Arliguie, T.; Border, C.; Chaudret, B.; Devillers, J.; Poilblanc, R.
Organometallics 1989, 8, 1308-1314. (b) Parkin, G.; Bercaw, J. E. J. Chem.
Soc., Chem. Commun. 1989, 255-257. (c) Jia, G.; Morris, R. H. J. Am. Chem.
Soc. 1991, 113, 875-883. (d) Jia, G.; Lough, A. J.; Morris, R. H.
Organometallics 1992, 11, 161-171. (e) Klooster, W. T.; Koetzle, T. F.; G.,
J.; Fong, T. P.; Morris, R. H.; Albinati, A. J. Am. Chem. Soc. 1994, 116,
7677-7681.
(3) (a) Lin, Z.; Hall, M. B. Organometallics 1992, 11, 3801-3804. (b)
Lin, Z.; Hall, M. B. Organometallics 1993, 12, 4046-4050. (c) Lin, Z. Y.;
Hall, M. B. Coord. Chem. ReV. 1994, 135, 845-879. (d) Abugideiri, F.;
Fettinger, J. C.; Pleune, B.; Poli, R.; Bayse, C. A.; Hall, M. B. Organometallics
1997, 16, 1179-1185.
(4) Gusev, D. G.; Kuhlman, R. L.; Renkema, K. B.; Eisenstein, O.; Caulton,
K. G. Inorg. Chem. 1996, 35, 6775-6783.
(5) (a) Crabtree, R. H. In ComprehensiVe Coordination Chemistry; Wilkin-
son, G., Gillard, R. D., McCleverty, J. A., Eds.; Pergamon Press: Oxford,
1987; Vol. II, pp 689-714. (b) Crabtree, R. H. Angew. Chem., Int. Ed. Engl.
1993, 32, 789-805. (c) Crabtree, R. H. Acc. Chem. Res. 1990, 23, 95-101.
(6) (a) Brintzinger, H. H. J. Am. Chem. Soc. 1967, 89, 6871-6876. (b)
Kenworthy, J. G.; Myatt, J.; Symons, M. C. R. J. Chem. Soc. A 1971, 1020-
1024. (c) Sanders, J. R. J. Chem. Soc., Dalton Trans. 1973, 748-749. (d)
Sanders, J. R. J. Chem. Soc., Dalton Trans. 1975, 2340-2342. (e) Gargano,
M.; Giannoccaro, P.; Rossi, M.; Vasapollo, G.; Sacco, A. J. Chem. Soc., Dalton
Trans. 1975, 9-12. (f) Allison, J. D.; Walton, R. A. J. Chem. Soc., Chem.
Commun. 1983, 401-403. (g) Luetkens, M. L., Jr.; Elcesser, W. L.; Huffman,
J. C.; Sattelberger, A. P. Inorg. Chem. 1984, 23, 1718-1726. (h) Sharp, P.
R.; Frank, K. G. Inorg. Chem. 1985, 24, 1808-1813. (i) Hamon, P.; Toupet,
L.; Hamon, J.-R.; Lapinte, C. Organometallics 1992, 11, 1429-1431. (j)
Attanasio, D.; Mura, P.; Maldotti, A.; Sostero, S.; Traverso, O. New J. Chem.
1992, 16, 347-350.
(7) (a) Pilloni, G.; Schiavon, G.; Zotti, G.; Zecchin, S. J. Organomet. Chem.
1977, 134, 305-318. (b) Klinger, R. J.; Huffman, J. C.; Kochi, J. K. J. Am.
Chem. Soc. 1980, 102, 208-216. (c) Ryan, O. B.; Tilset, M.; Parker, V. D.
J. Am. Chem. Soc. 1990, 112, 2618-2626. (d) Smith, K.-T.; Rømming, C.;
Tilset, M. J. Am. Chem. Soc. 1993, 115, 8681-8689.
(8) (a) Herrmann, W. A.; Theiler, H. G.; Herdtweck, E.; Kiprof, P. J.
Organomet. Chem. 1989, 367, 291-311. (b) Capitani, D.; Mura, P. Inorg.
Chim. Acta 1997, 258, 169-181.
(9) (a) Elson, I. H.; Kochi, J. K.; Klabunde, U.; Manzer, L. E.; Parshall,
G. W.; Tebbe, F. N. J. Am. Chem. Soc. 1974, 96, 7374-7375. (b) Elson, I.
H.; Kochi, J. K. J. Am. Chem. Soc. 1975, 97, 1262-1264.
(10) (a) Costello, M. T.; Walton, R. A. Inorg. Chem. 1988, 27, 2563-
2564. (b) Westerberg, D. E.; Rhodes, L. F.; Edwin, J.; Geiger, W. E.; Caulton,
K. G. Inorg. Chem. 1991, 30, 1107-1112. (c) Zlota, A. A.; Tilset, M.; Caulton,
K. G. Inorg. Chem. 1993, 32, 3816-3821.
(11) (a) Detty, M. R.; Jones, W. D. J. Am. Chem. Soc. 1987, 109, 5666-
5673. (b) Pedersen, A.; Tilset, M. Organometallics 1994, 13, 4887-4894.
(c) Smith, K.-T.; Tilset, M.; Kuhlman, R.; Caulton, K. G. J. Am. Chem. Soc.
1995, 117, 9473-9480.
(12) To a solution of 2 (115 mg, 0.160 mmol) in 4 mL of CH2Cl2 was
added FcPF6 (53 mg, 0.160 mmol) at room temperature. The yellow-orange
solution immediately turned red-orange. The solution was filtered and
concentrated under reduced pressure to ca. 0.5 mL. Orange single crystals of
-
[2]+PF6 were obtained by diffusion of a layer of diethyl ether into this
solution. Yield: 97 mg (70%). [1]+ can be obtained from 1 in an analogous
manner in either THF or CH2Cl2. The oxidized complexes do not give rise to
any observable NMR resonances.
(13) IR bands (THF, cm-1, all broad): 1, 1815 (m, sh), 1775 (m); [1]+,
1896 (w, sh), 1824 (m); 1-d3, 1307 (m); [1]+-d3, 1318 (m); 2, 1885 (w), 1815
(m); [2]+, 1897 (m), 1830 (w). W-D bands could not be located for
compounds 2-d3 and [2]+-d3 (no significant changes were observed upon
oxidation). The spectra of [1]+ and [1]+-d3 were recorded immediately after
charging the cell with the cold solution. The follow-up decompositions (see
text) generated a new weaker band at 1818 cm-1 from [1]+, assigned to 3. A
corresponding band for 3-d could not be observed.
(14) Berry, R. S.; Rice, S. A.; Ross, J. Physical Chemistry; Wiley: New
York, 1980; pp 266-268.
S0002-7863(97)02948-X CCC: $15.00 © 1998 American Chemical Society
Published on Web 03/19/1998