B. Kayser, C. Missling, J. Knizek, H. Nöth, W. Beck
FULL PAPER
at room temp., during the course of which a yellow-green powder
2243.5 Hz). Ϫ C46H40F6NO3P2PtSb (1147.6): calcd. C 48.14, H
precipitated. The precipitate was separated by centrifugation, 3.51, N 1.22; found C 48.53, H 3.89, N 1.24.
washed with diethyl ether (2 ϫ 10 ml), and dried in vacuo. Yield
Crystal Structure Determinations: A suitable single crystal of 1b
128 mg (80%), yellow-green powder, m.p. 164°C. Ϫ IR (KBr): ν˜ ϭ
or 2b was mounted on a glass fibre with perfluoroether oil. After
cooling to Ϫ80°C, the crystal was optically centered on a Siemens
P4 four-circle diffractometer equipped with a CCD area detector.
The dimensions of the unit cell were determined from the observed
reflections (> 10 σ) in 4 ϫ 15 frames with different ψ and χ orien-
tations. Data collection was performed with 10-s exposures at two
different χ settings with ∆ψ intervals of 0.3° (altogether 1296
frames). Data reduction was performed with the program SAINT
of Siemens Analytical Instruments, and a semiempirical absorption
correction was applied. The structures were solved by the heavy-
atom method and successive Fourier synthesis using the SHELX-
93 program (G.W. Sheldrick, University of Göttingen). All non-
hydrogen atoms were refined anisotropically. H atoms bound to
carbon atoms were placed in calculated positions and refined with
a riding model. N-bonded H atoms were located in the difference
Fourier synthesis and were freely refined with a fixed isotropic N.
Selected crystallographic data and data relating to the structure
solutions and refinement are summarized in Table 1.
3407 cmϪ1 m (NH), 1716 s (CO2), 1633 s (NCO). Ϫ 1H NMR
3
(CDCl3): δ ϭ 3.74 (s, 3 H, CH3), 5.32 (d, J ϭ 9.2 Hz, 1 H, CH),
7.36Ϫ7.49 (m, 4 H, NH, C6H5), 7.57Ϫ7.74 (m, 2 H, bpy),
7.86Ϫ8.21 (m, 6 H, bpy, C6H5), 9.25 (d, 3J ϭ 3.94 Hz, 1 H, o-bpy),
9.35 (d, 3J ϭ 5.4 Hz, 1 H, o-bpy). Ϫ C20H18N3O3BrPd·0.5C6H6
(573.8): calcd. C 48.15, H 3.69, N 7.32; found C 47.97, H 3.71,
N 7.26.
[CH(NHCOPh)(CO2Me)](PPh3)2PtBr (2a): To a solution of
224 mg (0.3 mmol) of (η2-ethylene)(Ph3P)2Pt in 10 ml of benzene,
82 mg (0.3 mmol) of methyl N-benzoyl-2-bromoglycinate was ad-
ded. Gas evolution was observed and the yellow solution was
stirred for 1 h. A white residue was separated by centrifugation,
the volatiles were evaporated from the supernatant solution, and
the residue was washed with pentane (3 ϫ 15 ml). Yield 268 mg
(90%), white powder, m.p. 104°C (decomp.). Ϫ IR (KBr): ν˜ ϭ 3413
1
cmϪ1 m (NH), 1713 s (CO2), 1647 s (NCO), 280 m (PtBr). Ϫ H
3
NMR (C6D6): δ ϭ 3.78 (s, 3 H, CH3), 5.44 (pseudo-q, JPH ϭ 9.7
2
Hz, JPtH ϭ 93.6 Hz, 1 H, CH), 6.94Ϫ8.74 (m, 36 H, NH, C6H5,
1
PPh3). Ϫ 31P NMR (C6D6): δ ϭ 17.90 (d, 2JPP ϭ 16.5 Hz, JPtP
ϭ
Ƞ
Dedicated to Professor Wolfgang Herrmann, as a mark of
2
1
1902.9 Hz), 20.45 (d, JPP ϭ 16.5 Hz, JPtP ϭ 4481.5 Hz). Ϫ
C46H40NO3BrP2Pt (991.8): calcd. C 55.71, H 4.07, N 1.41; found
C 55.51, H 4.76, N 1.75.
friendship and respect, on the occasion of his 50th birthday.
[1]
K. Severin, R. Bergs, W. Beck, Angew. Chem., in press.
[2]
X-ray diffraction measurements.
[3] [3a]
R. Kober, W. Steglich, Liebigs Ann. Chem. 1983, 599Ϫ609.
[3b]
General Procedure for the Abstraction of Bromide from 1a and
2a: To a solution of 160 mg (0.3 mmol) of 1a [or 297 mg (0.3 mmol)
of 2a] in 10 ml of acetone, a solution of 58 mg (0.3 mmol) of AgBF4
or 103 mg (0.3 mmol) of AgSbF6 in 5 ml of acetone was added.
Reaction was indicated by the rapid precipitation of AgBr; the sus-
pension was stirred for 1 h in the dark at room temp. and then the
precipitate was separated by centrifugation. The colorless/yellow
solution was concentrated in vacuo and the residue was washed
with diethyl ether (1b,c) or pentane (2b) (2 ϫ 15 ml) and dried
in vacuo.
Ϫ
R. Kober, K. Papadopoulos, W. Miltz, D. Enders, W.
[3c]
Steglich, Tetrahedron 1985, 41, 1693Ϫ1701. Ϫ
P. Münster,
W. Steglich, Synthesis 1987, 223Ϫ225. Ϫ [3d] G. Apitz, M. Jäger,
S. Jaroch, S. Kratzel, L. Schäffeler, W. Steglich, Tetrahedron
[3e]
1993, 49, 8223Ϫ8232. Ϫ
Th. Bretschneider, W. Miltz, P.
Münster, W. Steglich, Tetrahedron 1988, 44, 5403Ϫ5414. Ϫ
[3f]
V. A. Burgess, C. J. Easton, M. P. Hay, P. J. Steel, Aust. J.
Chem. 1988, 41, 701Ϫ710. Ϫ [3g] S. Jaroch, T. Schwarz, W. Steg-
lich, P. Zistler, Angew. Chem. 1993, 105, 1803Ϫ1805; Angew.
Chem. Int. Ed. Engl. 1993, 32, 1771.
[4] [4a]
B. Kayser, K. Polborn, W. Steglich. W. Beck, Chem. Ber.
[[4b]
1997, 130, 171Ϫ177. Ϫ
B. Kayser, H. Nöth, M. Schmidt,
G. Jaouen, A. Vessieres, I. S. Butler, Acc. Chem. Res. 1993,
W. Steglich, W. Beck, Chem. Ber. 1996, 129, 1617Ϫ1620.
[5] [5a]
Ϫ
[(bpy)PdϪCH(CO2Me)NHC(Ph)O]ϩ BF4 (1c): Yield 154
´
[5b]
26, 361Ϫ369. Ϫ
M. Salmain, M. Gunn, A. Gorfti, S. Top,
mg (95%), colorless powder, m.p. 193°C (decomp.). Ϫ IR (KBr):
[5c]
G. Jaouen, Bioconjugate Chem. 1993, 4, 425Ϫ433. Ϫ
A.
ν˜ ϭ 3410 cmϪ1 m (NH), 1707 s (CO2), 1602 s (NCO), 1083
Gorfti, M. Salmain, G. Jaouen, M. J. McGlinchey, A.
(BF4Ϫ). Ϫ H NMR (CDCl3 ϩ DMSO): δ ϭ 3.33 (s, 3 H, CH3),
1
Bennouna, A. Mousser, Organometallics 1996, 15, 142Ϫ151. Ϫ
[5d]
3
A. J. Gleichmann, J. M. Wolff, W. S. Sheldrick, J. Chem.
4.57 (s, 1 H, CH), 7.14Ϫ7.43 (m, 5 H, Ph, bpy), 7.71 (d, J ϭ 7.6
[5e]
Soc., Dalton Trans. 1995, 1549Ϫ1554. Ϫ
J. M. Wolff, A. J.
3
Hz, 2 H, Ph), 7.92 (pseudo-q, J ϭ 7.7 Hz, 2 H, bpy), 8.01Ϫ8.11
Gleichmann, W. S. Sheldrick, J. Inorg. Biochem. 1995, 59, 219.
3
3
(m, 2 H, bpy), 8.43 (d, J ϭ 5.5 Hz, 1 H, bpy), 8.71 (d, J ϭ 5.2
Hz, 1 H, bpy), 9.77 (s, 1 H, NH). Ϫ 13C NMR (CDCl3 ϩ DMSO):
δ ϭ 50.86, 51.25 (CH, CH3), 122.30, 122.98, 126.64, 126.71, 126.73,
127.77, 128.07, 132.89, 140.07, 140.44, 147.62, 152.66, 152.71,
[5f]
Ϫ
J. M. Wolff, W. S. Sheldrick, Chem. Ber. 1997, 130,
[5g]
981Ϫ988; J. Organomet. Chem. 1997, 531, 141Ϫ149. Ϫ
R.
M. Schweiger, T.
Krämer, Angew. Chem. 1996, 108, 1287Ϫ1289; Angew. Chem.
[5h]
Int. Ed. Engl. 1996, 35, 1197Ϫ1199. Ϫ
Ederer, K. Sünkel, W. Beck, J. Organomet. Chem., in press.
155.72 (bpy, Ph), 173.90, 178.63 (CO2, NCO).
Ϫ
[6] [6a]
A. S. C. Chan, J. J. Pluth, J. Halpern, Inorg. Chim. Acta
[6b]
C20H18BF4N3O3Pd (541.6): calcd. C 44.35, H 3.35, N 7.76; found
C 43.89, H 3.17, N 7.61.
1979, 37, L477ϪL479. Ϫ
A. S. C. Chan, J. Halpern, J. Am.
[6c]
Chem. Soc. 1980, 102, 838Ϫ840. Ϫ
Chem. 1983, 55, 99Ϫ196.
J. Halpern, Pure Appl.
[7a] J. M. Brown, P. A. Chaloner, J. Chem. Soc., Chem. Commun.
[7]
[(Ph3P)2PtϪCH(CO2Me)NHC(Ph)O]ϩ SbF6Ϫ (2b): Yield 309
mg (90%), colorless powder, m.p. 158°C (decomp.). Ϫ IR (KBr):
ν˜ ϭ 3437 cmϪ1 m (NH), 1709 m (CO2), 1607 m (NCO), 1098
(SbF6Ϫ). Ϫ 1H NMR (CDCl3): δ ϭ 3.27 (s, 3 H, CH3), 5.44 (dt,
1980, 344Ϫ346. Ϫ [7b] J. M. Brown, P. J. Maddox, J. Chem. Soc.,
[7c]
Chem. Commun. 1987, 1276Ϫ1278. Ϫ
J. M. Brown, Chem.
Soc. Rev. 1993, 22, 25Ϫ41. Ϫ [7d] J. A. Ramsden, T. D. W. Clar-
idge, J. M. Brown, J. Chem. Soc., Chem. Commun. 1995,
2469Ϫ2471.
3
3
2
3J(PH)trans ϭ 9.9 Hz, J(PH)cis ϭ 2.1 Hz, JHH ϭ 2.1 Hz, JPtH
ϭ
[8] [8a]
D. Mani, H.-T. Schacht, A. Powell, H. Vahrenkamp, Or-
46.8 Hz, 1 H, CH), 7.00Ϫ7.71 (m, 35 H, PPh3, Ph), 8.24 (pd,
[8b]
ganometallics 1987, 6, 1360Ϫ1361. Ϫ
Schacht, A. K. Powell, H. Vahrenkamp, Chem. Ber. 1989, 122,
2245Ϫ2251.
D. Mani, H.-T.
3
4JPH ϭ 6.5 Hz, JHH ϭ 2.1 Hz, 1 H, NH). Ϫ 13C NMR (CDCl3):
2
2
δ ϭ 50.62 (CH3), 62.82 (dd, J(PC)trans ϭ 81.8 Hz, J(PC)cis ϭ 3.6
Hz, CH), 127.57Ϫ134.87 (m, 42 C, PPh3, Ph), 173.64 (d,
[9]
J. A. Wiles, S. H. Bergens, J. Am. Chem. Soc. 1997, 119,
2940Ϫ2941.
A. J. Canty, G. K. Anderson, in Comprehensive Organometallic
Chemistry II (Eds.: E. W. Abel, F. G. A. Stone, G. Wilkinson),
Pergamon Press, 1995, 9, 225, 431.
3J(PC)trans ϭ 4.7 Hz, CO2), 180.78 (dd, J(PC)trans ϭ 10.6 Hz,
3
[10]
3J(PC)cis ϭ 3.4 Hz, NCO). Ϫ 31P NMR (CDCl3): δ ϭ 8.33 (d, 2JPP ϭ
1
2
1
19.8 Hz, JPtP ϭ 4223.1 Hz), 22.87 (d, JPP ϭ 19.8 Hz, JPtP
ϭ
378
Eur. J. Inorg. Chem. 1998, 375Ϫ379