AMPA or Kainate Receptor Antagonists
Journal of Medicinal Chemistry, 2006, Vol. 49, No. 8 2591
1222. (b) Simmons, R. M. A.; Li, D. L.; Hoo, K. H.; Deverill, M.;
Ornstein, P. L.; Iyengar, S. Kainate GluR5 receptor mediates the
nociceptive response to formalin in the rat. Neuropharmacology 1998,
37, 25-36. (c) O’Neill, M. J.; Bogaert, L.; Hicks, C. A.; Bond, A.;
Ward, M. A.; Ebinger, G.; Ornstein, P. L.; Michotte, Y.; Lodge, D.
LY377770, a novel iGluR5 kainate receptor antagonist with neuro-
protective effects in global and focal cerebral ischaemia. Neurop-
harmacology 2000, 39, 1575-1588. (d) Smolders, I.; Bortolotto, Z.
A.; Clarke, V. R. J.; Warre, R.; Khan, G. M.; O’Neill, M. J.; Ornstein,
P. L.; Bleakman, D.; Ogden, A.; Weiss, B.; Stables, J. P.; Ho, K.
H.; Ebinger, G.; Collingridge, G. L.; Lodge, D.; Michotte, Y.
Antagonists of GLUK5-containing kainate receptors prevent pilo-
carpine-induced limbic seizures. Nature Neurosci. 2002, 5, 796-
804.
CA), with slope factor fixed at 1, and top and bottom fixed at 100%
and 0% inhibition, respectively. The dissociation constant (Kb) was
calculated according to the Cheng-Prusoff equation20 from the IC50
value for inhibiting 100 µM glutamate-induced calcium influx.
Acknowledgment. The authors would like to thank the
BBSRC, the MRC and Tocris Bioscience for sponsoring this
work. We would like to thank Louise C. Argent and Anna Thom
from Tocris Bioscience for providing chiral HPLC data.
Supporting Information Available: Elemental analyses for
intermediates and final compounds. This material is available free
(6) (a) Christensen, J. K.; Varming, T.; Ahring, P. K.; Jørgensen, T. D.;
Nielsen, E. Ø. In vitro characterization of 5-carboxyl-2,4-di-benza-
midobenzoic Acid (NS3763), a noncompetitive antagonist of GLUK5
receptors. J. Pharmacol. Exp. Ther. 2004, 309, 1003-1010. (b)
Valgeirsson, J.; Nielsen, E. Ø., Peters, D, Kristensen, A. S.; Madsen,
U. Bioisosteric Modifications of 2-arylureidobenzoic acids: selective
noncompetitive antagonists for the homomeric kainate receptor
subtype GluR5. J. Med. Chem. 2004, 47, 6948-6957.
(7) (a) Jane, D. E.; Pook, P. C.-K.; Sunter, D. C.; Udvarhelyi, P. M.;
Watkins, J. C. New willardiine analogs with potent stereoselective
actions on mammalian spinal neurones. Br. Pharmacol. 1991, 104,
333P. (b) Patneau, D. K.; Mayer, M. L.; Jane, D. E.; Watkins, J. C.
Activation and desensitization of AMPA/kainate receptors by novel
derivatives of willardiine. J. Neurosci. 1992, 12, 595-606. (c) Wong,
L. A.; Mayer, M. L.; Jane, D. E.; Watkins, J. C. Willardiines
differentiate agonist binding sites for kainate-versus AMPA-preferring
glutamate receptors in DRG and hippocampal neurones. J. Neurosci.
1994, 14, 3881-3897. (d) Jane, D.E.; Hoo, K.; Kamboj, R.; Deverill,
M.; Bleakman, D.; Mandelzys, A. Synthesis of Willardiine and
6-Azawillardiine analogues: Pharmacological characterization on
cloned homomeric human AMPA and kainate receptor subtypes. J.
Med. Chem. 1997, 40, 3645-3650.
(8) (a) More, J. C. A.; Troop, H. M.; Jane, D. E. The novel antagonist
3-CBW discriminates between kainate receptors expressed on
neonatal rat motoneurones and those on dorsal root C-fibres. Br. J.
Pharmacol. 2002, 137, 1125-1133. (b) More, J. C. A.; Troop, H.
M.; Dolman, N. P.; Jane, D. E. Structural requirements for novel
willardiine derivatives acting as AMPA and kainate receptor antago-
nists. Br. J. Pharmacol. 2003, 138, 1093-1100. (c) More, J. C. A.;
Nistico, R.; Dolman, N. P.; Clarke, V. R. J.; Alt, A. J.; Ogden, A.
M.; Buelens, F. P.; Troop, H. M.; Kelland, E. E.; Pilato, F.; Bleakman,
D.; Bortolotto, Z. A.; Collingridge, G. L.; Jane, D. E. Characterisation
of UBP296; a novel, potent and selective kainate receptor antagonist.
Neuropharmacology 2004, 47, 46-64. (d) Dolman, N. P.; Troop,
H. M.; More, J. C. A.; Alt, A. J.; Ogden, A. M.; Jones, S.; Morley,
R. M.; Roberts, P. J.; Bleakman, D.; Collingridge, G. L.; Jane, D. E.
Synthesis and pharmacology of willardiine derivatives acting as
antagonists of kainate receptors. J. Med. Chem. 2005, 48, 7867-
7881.
(9) Robins, M. J.; Barr, P. J.; Giziewicz, J. Nucleic acid related
compounds. 38. Smooth and high yield iodination and chlorination
at C-5 of uracil bases and p-tolyl-protected nucleosides. J. Can. Chem.
1982, 60, 554-557.
(10) Tavs, P. Reaktion von arylhalogeniden mit trialkylphosphiten und
benzolphosphinigsa¨ure-dialkylestern zu aromatischen phosphonsa¨u-
reestern und phosphinsa¨ureestern unter nickelsalzkatalyse. Chem. Ber.
1970, 103, 2428-2436.
(11) (a) Arnold, L. D.; Drover, J. C. G.; Vederas, J. C. Conversion of
serine beta-lactones to chiral alpha amino acids by copper-containing
organolithium and organomagnesium reagents. J. Am. Chem. Soc.
1987, 109, 4649-4659. (b) Arnold, L. D.; Kalantar, T. H.; Vederas,
J. C. Conversion of serine to stereochemically pure â-substituted
R-amino acids via â-lactones. J. Am. Chem. Soc. 1985, 107, 7105-
7109. (c) Ramer, S. E.; Moore, R. N.; Vederas, J. C. Mechanism of
formation of serine â-lactones by Mitsunobu cyclization: synthesis
and use of L-serine stereospecifically labelled with deuterium at C-3.
Can. J. Chem. 1986, 64, 706-713.
References
(1) (a) Watkins, J. C.; Krogsgaard-Larsen, P.; Honore′, T. Structure-
activity relationships in the development of excitatory amino acid
receptor agonists and competitive antagonists. Trends Pharmacol.
Sci. 1990, 11, 25-33. (b) Jane, D. E. 2002. Antagonists acting at
the NMDA receptor complex: potential for therapeutic applications.
In Glutamate and GABA receptors and transporters. Eds Krogsgaard-
Larsen, P., Egebjerg, J., Schousboe, A. pp 69-98. London: Taylor
and Francis. (c) Schoepp, D. D.; Jane, D. E.; Monn, J. A.
Pharmacological agents acting at subtypes of metabotropic glutamate
receptors. Neuropharmacology 1999, 38, 1431-1476. (d) Kew, J.
N. C.; Kemp, J. A. Ionotropic and metabotropic glutamate receptor
structure and pharmacology. Psychopharmacology 2005, 179, 4-29.
(2) (a) Fletcher, E. J.; Lodge, D. New developments in the molecular
pharmacology of R-amino-3-hydroxy-5-methyl-4-isoxazolepropionate
and kainate receptors. Pharmacol. Ther. 1996, 70, 65-89. (b)
Bleakman, D.; Lodge, D. Neuropharmacology of AMPA and kainate
receptors. Neuropharmacology 1998, 37, 1187-1204. (c) Jane, D.
E.; Tse, H.-W.; Skifter, D. A.; Christie, J. M.; Monaghan, D. T.
Glutamate receptor ion channels: Activators and inhibitors. In
Pharmacology of Ionic Channel Function: ActiVators and Inhibitors;
Endo, M., Kurachi, Y., Mishina, M., Eds.; Berlin: Springer-Verlag,
2000; pp 415-459.
(3) (a) Bettler, B.; Mulle, C. Neurotransmitter receptors. 2. AMPA and
kainate receptors. Neuropharmacology 1995, 34, 123-139. (b)
Chittajallu, R.; Braithwaite, S. P.; Clarke, V. R.; Henley, J. M. Kainate
receptors: subunits, synaptic localization and function. Trends
Pharmacol. Sci. 1999, 20, 26-35. (c) Lodge, D.; Dingledine, R.
Ionotropic Glutamate Receptors. The IUPHAR Compendium of
Receptor Characterization and Classification, 2nd ed.; IUPHAR
Media Ltd.: London, 2001.
(4) (a) Clarke, V. R.; Ballyk, B. A.; Hoo, K. H.; Mandelzys, A.; Pellizzari,
A.; Bath, C. P.; Thomas, J.; Sharpe, E. F.; Davies, C. H.; Ornstein,
P. L.; Schoepp, D. D.; Kamboj, R. K.; Collingridge, G. L.; Lodge,
D.; Bleakman, D.. A hippocampal GluR5 kainate receptor regulating
inhibitory synaptic transmission. Nature 1997, 389, 599-603. (b)
Vignes, M.; Clarke, V. R.; Parry, M. J.; Bleakman, D.; Lodge, D.;
Ornstein, P. L.; Collingridge, G. L. The GluR5 subtype of kainate
receptor regulates excitatory synaptic transmission in areas CA1 and
CA3 of the rat hippocampus. Neuropharmacology 1998, 37, 1269-
1277. (c) Bortolotto, Z. A.; Clarke, V. R.; Delany, C. M.; Parry, M.
C.; Smolders, I.; Vignes, M.; Ho, K. H.; Miu, P.; Brinton, B. T.;
Fantaske, R.; Ogden, A.; Gates, M.; Ornstein, P. L.; Lodge, D.;
Bleakman, D.; Collingridge, G. L. Kainate receptors are involved in
synaptic plasticity. Nature 1999, 402, 297-301. (d) Filla, S. A.;
Winter, M. A.; Johnson, K. W.; Bleakman, D.; Bell, M. G.; Bleisch,
T. J.; Castano, A. M.; Clemens-Smith, A.; Del Prado, M.; Dieckman,
D. K.; Dominguez, E.; Escribano, A.; Ho, K. H.; Hudziak, K. J.;
Katofiasc, M. A.; Martinez-Perez, J. A.; Mateo, A.; Mathes, B. M.;
Mattiuz, E. L.; Ogden, A. M. L.; Phebus, L. A.; Stack, D. R.;
Stratford, R. E.; Ornstein, P. L. Ethyl (3S,4aR,6S,8aR)-6-(4-ethoxy-
carbonylimidazol-1-ylmethyl)decahydroisoquinoline-3-carboxylic es-
ter: a prodrug of a GluR5 kainate receptor antagonist active in two
animal models of acute migraine. J. Med. Chem. 2002, 45, 4383-
4386. (e) Dominguez, E.; Iyengar, S.; Shannon, H. E.; Bleakman,
D.; Alt, A.; Arnold, B. M.; Bell, M. G.; Bleisch, T. J.; Buckmaster,
J. L.; Castano, A. M.; Prado, M. D.; Escribano, A.; Filla, S. A.; Ho,
K. H.; Hudziak, K. J.; Jones, C. K.; Martinez-Perez, J. A.; Mateo,
A.; Mathes, B. M.; Mattiuz, E. L.; Ogden, A. M. L.; Simmons, R.
M. A.; Stack, D. R.; Stratford, R. E.; Winter, M. A.; Wu, Z.; Ornstein,
P. L. Two prodrugs of potent and selective GluR5 kainate receptor
antagonists active in three animal models of pain. J. Med. Chem.
2005, 48, 4200-4203.
(12) Dalpozzo, R.; De Nino, A.; Maiuolo, L.; Procopio, A.; Romeo, R.;
Sindona, G. A convenient method for the synthesis of N-vinyl
derivatives of nucleosides. Synthesis 2002, 2, 172-174.
(13) Normant, H. M. Chimie organique-Pre´paration et proprie´te´s du
dihydro-2,3-furanne. COREAF: C.R. Hebd. Seances Acad. Sci. 1949,
228, 102-104.
(14) Kametani, T.; Kigasawa, K.; Hiiragi, M.; Wakisaka, K.; Kusama,
O.; Kawasaki, K.; Sugi, H. Studies on the synthesis of chemothera-
peutics. I. Synthesis of 1-(2-tetrahydrofuryl)-5-fluorouracil [Ftorafur]
(studies on the synthesis of heterocyclic compounds. J. Heterocycl.
Chem. 1977, 14, 473-475.
(5) (a) O′Neill, M. J.; Bond, A.; Ornstein, P. L.; Ward, M. A.; Hicks, C.
A.; Hoo, K.; Bleakman, D.; Logde, D. Decahydroisoquinolines: novel
competitive AMPA/kainate antagonists with neuroprotective effects
in global cerebral ischaemia. Neuropharmacology 1998, 37, 1211-