7158
B. Danieli et al. / Tetrahedron Letters 43 (2002) 7155–7158
References
1. For a review, see: Hoppe, D.; Hense, T. Angew. Chem.,
Int. Ed. Engl. 1997, 36, 2282.
2. For recent developments, see: (a) Deiters, A.; Fro¨lich, R.;
Hoppe, D. Angew. Chem., Int. Ed. 2000, 39, 2105; (b)
Johnson, T. A.; Curtis, M. D.; Beak, P. J. Am. Chem.
Soc. 2001, 123, 1004.
3. Ebner, T.; Eichelbaum, M.; Fisher, P.; Meese, C. O.
Arch. Pharm. (Weinheim) 1989, 322, 399.
4. (a) Gallagher, D. J.; Wu, S.; Nikolic, N. A.; Beak, P. J.
Org. Chem. 1995, 60, 8148; (b) Li, X.; Schenkel, L. B.;
Kozlowski, M. C. Org. Lett. 2000, 2, 875.
5. (a) Otomasu, H.; Takatsu, N.; Noguchi, M.; Ohmiya, S.
Chem. Pharm. Bull. 1987, 35, 4990; (b) Wanner, M. J.;
Koomen, G.-J. J. Org. Chem. 1996, 61, 5581; (c) Wendt,
J. A.; Aube´, J. Tetrahedron Lett. 1996, 37, 1531.
6. (a) Harrison, J. R.; O’Brien, P.; Porter, D. W.; Smith, N.
M. J. Chem. Soc., Perkin Trans. 1 1999, 3623; (b) Har-
rison, J. R.; O’Brien, P. Tetrahedron Lett. 2000, 41, 6161;
(c) Harrison, J. R.; O’Brien, P. Tetrahedron Lett. 2000,
41, 6167.
Figure 3.
76% yield and 97% ee which we achieved by (−)-
sparteine. This good result entirely confirms the prelim-
inary encouraging evidences provided by O’Brien et
al.,7 in their studies using a partially resolved diamine
rac-2 (55% ee).
7. Harrison, J. R.; O’Brien, P.; Porter, D. W.; Smith, N. M.
Chem. Commun. 2001, 1202.
Examination of diamine 3 in the same reaction led to a
lower reactivity (31% yield of (S)-15) and to a disap-
pointingly low enantioselectivity (21% ee), providing
anyway insight into the important features relevant to
the stereoselectivity in this deprotonation–substitution
reaction. The ABC ring system of sparteine seems to be
required in order to maintain the capacity of bidentate
coordination of a cation, while the D ring not only
appears unnecessary, but even it works against the
favourable conformation for coordination in the BCD
ring system. More interestingly, it has to be noted that
the tricyclic diamine ent-2, easily accessible from ent-49
as described in Scheme 2, would represent a valuable
surrogate of the commercially unavailable (+)-sparteine,
for enantioselective lithiation–electrophilic quench
reactions.
8. For reviews, see: (a) Weinreb, S. M.; Staib, R. R. Tetra-
hedron 1982, 38, 3087–3128; (b) Waldmann, H. Synthesis
1994, 6, 535–551; (c) Jørgensen, K. A. Angew. Chem., Int.
Ed. 2000, 39, 3558–3588.
9. Danieli, B.; Lesma, G.; Passarella, D.; Silvani, A. J. Org.
Chem. 1998, 63, 3492.
10. Danieli, B.; Lesma, G.; Passarella, D.; Silvani, A.; Vivi-
ani, N. Tetrahedron 1999, 55, 11871.
11. Consonni, A.; Danieli, B.; Lesma, G.; Passarella, D.;
Piacenti, P.; Silvani, A. Eur. J. Org. Chem. 2001, 1377.
12. Selected data for 6: [h]D=−5 (c 1, CHCl3). 1H NMR (300
MHz, CDCl3): l 8.30 (d, 1H, J=8.1 Hz), 7.32 (m, 5H),
5.52 (d, 1H, J=8.1 Hz), 5.07 (s, 2H), 4.43 (br d, 1H,
J=13.4 Hz), 4.34 (br d, 1H, J=13.4 Hz), 3.93 (dd, 1H,
J=15.3, 3.6 Hz), 3.01 (br d, 2H, J=13.8 Hz), 2.70 (t, 1H,
J=15.5 Hz), 2.30 (dd, 1H, J=15.5, 3.3 Hz), 2.12 (br d,
J=13.5 Hz), 1.92 (m, 1H), 1.71 (br d, J=13.5 Hz); 13C
NMR (CDCl3, 75.4 MHz): l 205.7, 169.1, 156.0, 142.5,
136.0, 128.4, 128.0, 109.7, 62.2, 60.5, 58.9, 56.4, 43.7,
39.2, 33.1, 25.6; FAB+MS m/z: 341 [MH+].
In summary, the first enantioselective synthesis of tri-
cyclic diamines 2 and 3, bearing the same absolute
stereochemistry as the ABC and BCD rings of the
naturally occurring alkaloid (−)-sparteine, has been
reported. The key step of the route is a lanthanide
triflate-catalyzed imino Diels–Alder reaction. The
availability of both the enantiomeric forms (4 and
ent-4) of the chiral starting material would allow for an
access to these diamine ligands as both antipodes.
Work is now in progress in order to provide a totally
stereoselective route to diamine 2 and to its enantiomer,
in view of its high capacity of matching the enantiose-
lectivity of sparteine.
13. Selected data for 9a,b: 1H NMR (300 MHz, CDCl3): l
7.50–7.20 (m, 10H), 7.12 (d, 1H, J=8.0 Hz), 5.07 (s, 2H),
4.96 (d, 1H, J=8.0 Hz), 4.55–4.10 (m, 4H), 3.99 (dd, 1H,
J=11.4, 5.1 Hz), 3.84 (dd, 1H, J=11.4, 6.8 Hz), 3.34 (m,
1H), 2.76–2.25 (m, 4H), 2.03 (s, 3H), 2.20–1.85 (m, 3H),
1.15 (q, 0.5H, J=12.4 Hz), 0.94 (q, 0.5H, J=12.4 Hz);
13C NMR (CDCl3, 75.4 MHz, signals in brackets refer to
the same carbon in a and b diastereoisomers): l (189.9,
189.8), 170.7, 155.0, (153.6, 152.8), (136.5, 136.2), 129.1,
128.4, 127.9, 127.7, 127.2, (98.0, 97.8), 67.2, 66.0, 59.3,
58.3, (47.1, 46.9), 45.8, 38.8, (37.0, 36.4), (36.0, 35.6),
(30.4, 29.9), 20.6; FAB+MS m/z: 477 [MH+].
Acknowledgements
14. Kobayashi, S.; Ishitani, H.; Nagayama, S. Synthesis 1995,
1195.
15. (a) Beak, P.; Kerrick, S. T.; Wu, S.; Chu, J. J. Am. Chem.
Soc. 1994, 116, 3231; (b) Gallagher, D. J.; Wu, S.;
Nikolic, N. A.; Beak, P. J. Org. Chem. 1995, 60, 8148.
This work was supported by Ministero dell’Universita` e
della Ricerca Scientifica e Tecnologica (MURST).