2522
A. Kamal et al. / Tetrahedron: Asymmetry 21 (2010) 2517–2523
(75 MHz, CDCl3): 19.21, 26.76, 35.00, 64.32, 73.66, 116.65, 117.90,
127.65, 128.67, 129.57, 130.55, 133.26, 135.52, 165.61; MS–ESIMS:
m/z 395 (M+H)+. HR ESIMS: m/z calcd for C24H30O3NaSi: 417.1861;
found: 417.1853.
1H NMR (CDCl3, 300 MHz): d 2.47–2.42 (m, 2H), 4.98–4.88 (m,
1H), 5.31–5.27 (dd, 1H, J = 10.76 Hz), 5.43–5.37 (dd, 1H,
J = 17.34 Hz), 6.06–5.88 (m, 2H), 6.89–6.83 (m, 1H): 13C NMR
(CDCl3, 75 MHz): d 29.3, 77.7, 117.8, 121.6, 134.8, 144.3, 163.7.
MS–EIMS: m/z 125 (M+H)+.
4.12. (R)-6-((2,2-Dimethyl-1,1-diphenylpropoxy)methyl)-5,6-
dihydropyran-2-one 21
4.15. (1R,2R,4E)-2-(Acetyloxy)-1-[(1R)-1-(acetyloxy)ethyl]-5-
[(2R)-6-oxo-3,6-dihydro-2H-2-pyranyl]-4-pentenyl acetate 2
(synargentolide A)
To a stirred solution of compound 20 (0.4 g, 1.015 mmol) in dry
CH2Cl2 (800 mL), Grubbs’ 1st generation catalyst I (10 mol %) was
added at reflux for 48 h. After completion of the reaction, the reac-
tion mixture was directly adsorbed on silica gel and purified by
column chromatography by eluting EtOAc–hexane 30:70 to afford
To a solution of compound 15 (0.038 g, 0.14 mmol) and com-
pound 23 (0.07 g, 0.56 mmol) in dry CH2Cl2 (100 mL) under nitro-
gen conditions, Grubbs-II catalyst (0.071 g, 0.08 mmol) was added.
The resulting mixture was refluxed for 4 h. After completion of the
reaction, the solvent was evaporated and the crude residue was
purified by column chromatography using silica gel, 60–120 mesh,
by eluting EtOAc–hexane 20:80 to afford product 2 (0.028 g, 55%).
compound 21 (0.297 g, 80%) as a liquid. ½a D26
ꢂ
¼ þ47:8 (c 1, CHCl3);
IR (neat):
c ;
max: 2932, 2858, 1729, 1108, 703 cmꢃ1 1H NMR
(300 MHz, CDCl3): d 1.06 (s, 9H), 2.35–2.61 (m, 2H), 3.82 (d,
J = 4.91 Hz, 2H), 4.46 (m, 1H), 5.98 (dd, J = 1.5, 8.3 Hz, 1H), 6.80–
6.87 (m, 1H), 7.33–7.41 (m, 6H), 7.62 (m, 4H); 13C NMR (75 MHz,
CDCl3): 19.22, 25.88, 26.74, 64.71, 77.53, 121.16, 127.76, 129.85,
132.74, 132.89, 135.48, 135.54, 144.83, 163.74; MS–ESIMS: m/z
389 (M+Na)+. HR ESIMS: m/z calcd for C22H26O3NaSi: 389.1548;
found: 389.1538.
½
a 2D6
ꢂ
¼ þ36:5 (c 1, CHCl3); IR (neat):
c ;
max: 1738, 1374, 1024 cmꢃ1
1H NMR (300 MHz, CDCl3): d 1.18 (d, J = 6.4 Hz, 3H), 2.0 (s, 3H),
2.04 (s, 3H), 2.13 (s, 3H), 2.28 (m, 2H), 2.39 (m, 2H), 4.86 (m,
1H), 4.98 (m, 1H), 5.08 (dt, J = 7.2, 4.0 Hz, 1H), 5.15 (m, 1H),
5.67–5.79 (m, 2H), 6.03 (dt, J = 10.4, 2.4 Hz, 1H), 6.84 (ddd,
J = 8.8, 4.0, 2.4 Hz, 1H); 13C NMR (75 MHz, CDCl3): 16.0, 20.6,
20.8, 21.0, 29.4, 34.3, 67.5, 69.8, 73.7, 77.2, 121.5, 128.3, 130.9,
144.5, 163.8, 170.0, 170.1, 170.2. MS–ESIMS: m/z 391 (M+Na)+.
HR ESIMS: m/z calcd for C18H24O8Na: 391.1368; found: 391.1376.
4.13. (R)-6-(Hydroxymethyl)-5,6-dihydropyran-2-one 22
To a stirred solution of compound 21 (0.9 g, 2.46 mmol) in dry
THF (10 mL) was added tetrabutylammoniumfluoride (TBAF)
(2.46 mL, 2.46 mmol, 1 M in toluene) at 0 °C for 30 min. After com-
pletion of the reaction, the reaction mixture was quenched with
satd aq NH4Cl (5 mL), then THF was evaporated and extracted with
EtOAc (3 ꢁ 10 mL) and organic layers were washed with brine,
dried over anhydrous Na2SO4, and concentrated in vacuo. The
crude product was purified by column chromatography using silica
gel, 60–120 mesh, by eluting with EtOAc–hexane 7:3 to afford
Acknowledgment
The authors M.B.K, P.V.R., and S.F. wish to thank UGC, New Delhi
for the award of research fellowships.
References
compound 22 (0.267 g, 85%) as a colorless oil. ½a D26
¼ þ120:9 (c
ꢂ
1. (a) Argoudelis, A. D.; Zieserl, J. F. Tetrahedron Lett. 1966, 18, 1969–1973; (b)
Cavil, G. W. K.; Clark, D. V.; Whitefield, F. B. Aust. J. Chem. 1968, 21, 2819; (c)
Laurence, B. R. J. Chem. Soc., Chem. Commun. 1982, 59; (d) Honda, T. J. Chem. Soc.,
Perkin Trans. 1 1990, 1733; (e) Wilkinson, A. L.; Hanefeld, U.; Wilkinson, B.;
Leadlay, P. F.; Staunton, J. Tetrahedron Lett. 1998, 39, 9827–9830; (f) Sato, M.;
Nakashima, H.; Keisuke, H.; Hayashi, M.; Honzumi, M.; Taniguchi, T.;
Ogasawara, K. Tetrahedron Lett. 2001, 42, 2833–2837; (g) Hinterding, K.;
Singhanat, S.; Oberer, L. Tetrahedron Lett. 2001, 42, 8463–8465; (h) Wu, Y.;
Shen, X.; Tang, C.-J.; Chen, Z. L.; Hu, Q.; Shi, W. J. Org. Chem. 2002, 11, 3802–
3810; (i) Yadav, J. S.; Reddy, P. M. K.; Reddy, P. V. Tetrahedron Lett. 2007, 48,
1037–1039; (j) Chakraborty, T. K.; Tapadar, S. Tetrahedron Lett. 2003, 44, 2541–
2543; (k) Yamashita, Y.; Saito, S.; Ishitani, H.; Kobayashi, S. J. Am. Chem. Soc.
2003, 125, 3793–3798; (l) Kobayashi, S.; Tsuchiya, K.; Harada, T.; Nishide, M.;
Kurokawa, T.; Nakagawa, T.; Shimada, N.; Kobayashi, K. J. Antibiot. 1994, 47,
697.
2. (a) Stierle, D. B.; Stierle, A. A.; Ganser, B. J. Nat. Prod. 1997, 60, 1207–1209; (b)
Ali, A.; Mackeen, M. M.; Hamid, M.; Aun, Q. B.; Zauyah, Y.; Azimahtol, H. L. P.;
Kawazu, K. Planta Med. 1997, 63, 81–83; (c) Falomir, E.; Murga, J.; Cardaa, M.;
Marcob, J. A. Tetrahedron Lett. 2003, 44, 539–541; (d) Chenevert, R.;
Courchesne, G.; Caron, D. Tetrahedron: Asymmetry 2003, 14, 2567–2571.
3. (a) Pereda-Miranda, R.; Fragoso-Serrano, M.; Cerda-Garc´ıa-Rojas, C. M.
Tetrahedron 2001, 57, 47–53; (b) Falomir, E.; Murga, J.; Carda, M.; Marco, J. A.
Tetrahedron Lett. 2003, 44, 539–541; (c) Falomir, E.; Murga, J.; Ruiz, P.; Carda,
M.; Marco, J. A.; Pereda-Miranda, R.; Fragoso-Serrano, M.; Cerda-Garc´ıa-Rojas,
C. M. J. Org. Chem. 2003, 68, 5672–5676.
4. Coleman, M. T. D.; English, R. B.; Rivett, D. E. A. Phytochemistry 1987, 26, 1497–
1499.
5. (a) Birch, A. J.; Butler, D. N. J. Chem. Soc. 1964, 4167–4168; (b) Achmad, S. A.;
Høyer, T.; Kjaer, A.; Makmur, L.; Norrestam, R. Acta Chem. Scand. 1987, 41B,
599–609.
6. (a) Alemany, A.; Marquez, C.; Pascual, C.; Valverde, S.; Martinez-Ripoll, M.;
Fayos, J.; Perales, A. Tetrahedron Lett. 1979, 20, 3583–3586; (b) Pereda-Miranda,
R.; Fragoso-Serrano, M.; Cerda-Garcia-Rojas, C. M. Tetrahedron 2001, 57, 47–53;
(c) Achmad, S. A.; Hoyer, T.; Kjaer, A.; Makmur, L.; Norrestam, R. Acta Chem.
Scand. 1987, 41B, 599–609.
7. Collett, L. A.; Davies-Coleman, M. T.; Rivett, D. E. A. Phytochemistry 1998, 48,
651–656.
8. García-Fortanet, J.; Murga, J.; Carda, M.; Marco, J. A. ARKIVOC 2005, 175–188.
9. (a) Sabitha, G.; Fatima, N.; Gopal, P.; Reddy, C. N.; Yadav, J. S. Tetrahedron:
Asymmetry 2009, 20, 184–191; (b) Sabitha, G.; Gopal, P.; Reddy, C. N.; Yadav, J.
S. Tetrahedron Lett. 2009, 50, 6298–6302.
0.1, CHCl3); IR (neat): cmax
: 3400, 2929, 1713, 1260, 1039,
816 cmꢃ1 1H NMR (300 MHz, CDCl3): d 2.28–2.38 (m, 1H), 2.54–
;
2.66 (m, 1H), 3.48 (br s, 1H), 3.71 (dd, J = 12.27 Hz, 1H), 3.87 (m,
J = 12.27 Hz, 1H), 4.47–4.57 (m, 1H), 5.98 (dd, J = 2.26, 9.82 Hz,
1H), 6.91–6.97 (m, 1H); 13C NMR (75 MHz, CDCl3): 25.17, 63.55,
78.41, 120.71. 145.57, 164.14; MS–EIMS: m/z 129 (M+H)+.
4.14. (R)-6-Vinyl-5,6-dihydropyran-2-one 23
To a stirred solution of compound 22 (0.2 g, 1.56 mmol) in
CH2Cl2 (5 mL), Dess–Martin periodinate (0.728 g, 1.71 mmol) was
added at 0 °C for 1 h. After completion of the reaction, the reaction
mixture was quenched with saturated sodium thiosulfate solution
(5 mL) and saturated aqueous sodium bicarbonate solution (5 mL).
The reaction mixture was extracted with dichloromethane (3 ꢁ
5 mL), dried over anhydrous Na2SO4 and concentrated at 30 °C in
vacuo to afford the aldehyde. This was used directly in the next
step without further purification. To methyltriphenylphosphonium
bromide (0.78 g, 1.562 mmol) in dry THF (12 mL) under a nitrogen
atmosphere at 0 °C was added t-BuOK (0.21 g, 1.87 mmol) and stir-
red for 4 h at the same temperature. To this orange yellow ylide
solution, the above crude aldehyde in dry THF (3 mL) was added
and stirred at the same temperature for 2 h. The reaction mixture
was quenched with saturated aqueous NH4Cl solution (5 mL).
The mixture was filtered over a Celite pad and the residue was
washed with ether (5 mL). Next, THF was evaporated, and then ex-
tracted with EtOAc (3 ꢁ 10 mL). The combined organic layers were
dried over anhydrous Na2SO4 and concentrated in vacuo. The res-
idue was purified by column chromatography using silica gel,
60–120 mesh, EtOAc–hexane 20:80 to afford the compound 23
(0.075 g, 39%) as a colorless liquid. ½a D26
¼ þ94:3 (c 0.1, CHCl3);
ꢂ