Journal of Inorganic and General Chemistry
ARTICLE
Zeitschrift für anorganische und allgemeine Chemie
1.95–1.84 (m, 10 H, PCy-CH+CH2), 1.70–1.65 (m, 6 H,, PCy-CH2),
Acknowledgements
1.61–1.57 (m, 3 H,, PCy-CH2), 1.43–1.38 (m, 4 H,, PCy-CH2), 1.20–
1.10 (m, 10 H,, PCy-CH2). 13C{1H} NMR ([D8]THF, 100.6 MHz): δ =
155.5 (ipso-C), 137.1 (p-C) 128.4 (m-CH), 126.9 (o-CH), 36.9 (d, J =
52.8; PCy3-CH), 28.7 (PCy3–CH2), 28.6 (d, J = 8.4, PCy3–CH2), 27.5
(PCy3–CH2), 21.4 (p-Tol-CH3). The signal for the PCS bridge could
not be observed. 31P{1H} NMR ([D8]THF,162 MHz): δ = 10.1 (s)
This project has received funding from the European Research Council
under the European Union’s Horizon 2020 research and innovation
program (Starting grant no 677749).
7
Keywords: Alkali metals; Ylides; Carbanions; Structure elu-
ppm. Li NMR ([D8]THF, 155.6 MHz): δ = 0.6 (s) ppm. EA: calcd.:
cidation; Phosphorus ligands
C: 68.70, H: 8.87, S: 7.05%; found: C: 68.73, H: 8.84, S: 7.03%
Synthesis of Cy1-K: Benzyl potassium (0.32 g, 2.45 mmol, 1.1 equiv.)
and Cy1-H (1.00 g, 2.22 mmol, 1.0 equiv.) were placed into a Schlenk
tube and toluene (25 mL) was added. The red reaction mixture was
stirred for 5 min at room temp. and was subsequently filtered via a
filter cannula. A dark yellow solution was obtained. The solvent was
removed under reduced pressure and the residue was dried in vacuo
(1ϫ10–3 mbar) for 3 h at 40 °C to yield CyYS-K as a dark yellow
powder (98%, 532 mg). Single crystals of Cy1-K were grown by stor-
References
[1] a) A. Michaelis, H. Gimborn Hv, Ber. Dtsch. Chem. Ges. 1894,
27, 272; b) H. Staudinger, J. Meyer, Helv. Chim. Acta 1919, 2,
635; c) G. Wittig, C. Geissler, Liebig Ann. Chem. 1953, 44, 580;
d) G. Wittig, Science 1980, 210, 600.
[2] For reviews, see: a) O. I. Kolodiazhnyi, Phosphorus Ylides:
Chemistry and Application in Organic Synthesis, Wiley-VCH,
1999; b) M. Alcarazo, Struct. Bonding (Berlin) 2018, 177, 25; c)
R. Oost, J. D. Neuhaus, J. Merad, N. Maulide, Struct. Bonding
(Berlin) 2018, 177, 73; d) S. Liu, W.-C. Chen, T.-G. Ong, Struct.
Bonding (Berlin) 2018, 177, 51; e) A. C. B. Burtoloso, R. M. P.
Dias, I. A. Leonarczyk, Eur. J. Org. Chem. 2013, 5005; f) D.
Kaiser, I. Klose, R. Oost, J. Neuhaus, N. Mulide, Chem. Rev.
2019, 119, 8701.
age of
a
saturated THF solution at –30 °C. 1H NMR
([D8]THF,400 MHz): δ = 7.79 (br., 2 H, m-CH), 6.91 (br., 2 H, o-CH),
2.28 (s, 3 H, p-Tol-CH3), 1.87–1.75 (m, 8 H, PCy-CH+CH2), 1.71–
1.66 (m, 6 H, PCy-CH2), 1.61–1.57 (m, 3 H, PCy-CH2), 1.42–1.31
(m, 6 H, PCy-CH2), 1.17–1.02 (m, 10 H, PCy-CH2). 13C{1H} NMR
([D8]THF, 100.6 MHz): δ = 157.3 (ipso-C), 136.2 (p-C) 128.6 (m-CH),
126.3 (o-CH), 37.4 (d, J = 52.5 Hz; PCy3-CH), 28.9 (PCy3–CH2), 28.8
(PCy3–CH2), 27.7 (PCy3–CH2), 21.5 (p-Tol-CH3). The signal for PCS
bridge could not be observed. 31P{1H} NMR ([D8]THF,162 MHz): δ =
3.2 (s, br) ppm. EA: calcd.: C: 64.16, H: 8.28, S: 6.59%; found: C:
64.50, H: 8.30, S: 6.88%.
[3] H.-J. Cristau, Chem. Rev. 1994, 94, 1299.
[4] a) M. Schlosser, T. Kadibelban, G. Stanihoff, Justus Liebigs Ann.
Chem. 1971, 743, 25; b) B. Schaub, T. Jenny, M. Schlosser, Tetra-
hedron Lett. 1984, 25, 4097; c) B. Schaub, M. Schloseer, Tetrahe-
dron Lett. 1985, 26, 1623; d) R. S. Mc Dowell, A. Streitwieser,
J. Am. Chem. Soc. 1984, 106, 4047.
[5] a) E. J. Corey, J. Kang, J. Am. Chem. Soc. 1982, 104, 4724; b)
E. J. Corey, J. Kang, K. Kyler, Tetrahedron Lett. 1985, 26, 555;
c) M. Schlosser, H. BaTuong, J. Raspondek, B. Schaub, Chimia
1983, 37, 10.
[6] a) H. J. Bestmann, M. Schmidt, Angew. Chem. Int. Ed. Engl.
1987, 26, 79; b) H. J. Bestmann, M. Schmidt, Tetrahedron Lett.
1987, 28, 2111.
[7] a) S. Goumri-Magnet, H. Gornitzka, A. Baceiredo, G. Bertrand,
Angew. Chem. Int. Ed. 1999, 38, 678; b) T. Baumgartner, B.
Schinkels, D. Gudat, M. Nieger, E. Niecke, J. Am. Chem. Soc.
1997, 119, 12410; c) A. Garduno-Alva, R. Lenk, Y. Escudié,
M. L. González, L. Bousquet, N. Saffon-Merceron, C. A. Toled-
ano, X. Bagan, V. Branchadell, E. Maerten, A. Baceiredo, Eur. J.
Inorg. Chem. 2017, 3494.
[8] T. Scherpf, R. Wirth, S. Molitor, K.-S. Feichtner, V. H. Gessner,
Angew. Chem. Int. Ed. 2015, 54, 8542; Angew. Chem. 2015, 127,
8662.
[9] C. Schwarz, L. T. Scharf, T. Scherpf, J. Weismann, V. H. Gessner,
Chem. Eur. J. 2019, 25,11, 2793.
[10] a) C. Schwarz, T. Scherpf, I. Rodstein, J. Weismann, K.-S.
Feichtner, V. H. Gessner, ChemistryOpen 2019, 8, 621; b) L. T.
Scharf, D. M. Andrada, G. Frenking, V. H. Gessner, Chem. Eur.
J. 2017, 23, 4422.
[11] For reviews: a) L. T. Scharf, V. H. Gessner, Inorg. Chem. 2017,
56, 8599; b) V. H. Gessner, , Struct. Bonding (Berlin) 2018, 177,
117.
Synthesis of Cy1-Na: Sodium amide (5 mg, 128 μmol, 1.01 equiv.) and
Cy1-H (57 mg, 127 μmol, 1.0 equiv.) were placed into a J. Young NMR
tube and [D8]THF (0.5 mL) was added. The tube was shaken on an
IKA® ROCKER 3D digital at room temp. overnight. 31P-NMR spec-
troscopy revealed full conversion of Cy1-H and the formation of
Cy1-Na (ca. 96%). Attempts to purify Cy1-Na resulted in the instant
1
protonation of the ylidic carbon atom. H NMR ([D8]THF,400 MHz):
δ = 7.80 (br., 2 H, m-CH), 6.90 (br., 2 H, o-CH), 2.27 (s, 3 H,
p-Tol-CH3), 1.86–1.78 (m, 8 H, PCy-CH+CH2), 1.71–1.64 (m, 6 H,
PCy-CH2), 1.61–1.56 (m, 3 H, PCy-CH2), 1.43–1.34 (m, 6 H,
PCy-CH2), 1.18–1.04 (m, 10 H, PCy-CH2) ppm. 31P{1H} NMR
([D8]THF,162 MHz): δ = 6.1 (s, br) ppm.
Single-crystal X-ray Diffraction Analyses: Data collection of all
compounds was conducted with Rigaku XtaLAB Synergy (Cy1-H,
Cy1-H, Cy1-Li·LiI, Cy1-K). The structures were solved by direct meth-
ods, refined with the Shelx software package and expanded using Fou-
rier techniques. The crystals of all compounds were mounted in inert
oil (perfluoropolyalkylether). Crystal structure determinations were af-
fected at 100 K. The structures were solved by direct methods, refined
using full-matrix least-squares techniques on F2 with the Shelx soft-
ware package[20] and expanded using Fourier techniques. Data collec-
tion parameters are given in Tables S1 and S2 (Supporting Infor-
mation).
Crystallographic data (excluding structure factors) for the structures in
this paper have been deposited with the Cambridge Crystallographic
Data Centre, CCDC, 12 Union Road, Cambridge CB21EZ, UK.
Copies of the data can be obtained free of charge on quoting
the depository numbers CCDC-1971569, CCDC-1971570, CCDC-
1971571, and CCDC-1971572. (Fax: +44-1223-336-033; E-Mail:
deposit@ccdc.cam.ac.uk, http://www.ccdc.cam.ac.uk)
[12] For examples: a) A. Fürstner, M. Alcarazo, K. Radkowski, C. W.
Lehmann, Angew. Chem. Int. Ed. 2008, 47, 8302; b) S. Nakafuji,
J. Kobayashi, T. Kawashima, Angew. Chem. Int. Ed. 2008, 47,
1141; c) M. Asay, S. Inoue, M. Driess, Angew. Chem. Int. Ed.
2011, 50, 9589; d) I. Alvardo-Beltran, A. Baceiredo, N. Saffon-
Merceron, V. Branchadell, T. Kato, Angew. Chem. Int. Ed. 2016,
55, 16141; e) J. Berthe, J. M. Garcia, E. Ocando, T. Kato, N.
Saffon-Merceron, A. De Cózar, F. P. Cossío, A. Baceiredo, J. Am.
Chem. Soc. 2011, 133, 15930; f) N. Del Rio, A. Baceiredo, N.
Saffon-Merceron, D. Hashizume, D. Lutters, T. Müller, T. Kato,
Supporting Information (see footnote on the first page of this article):
Synthesis, Isolation and Crystal Structure of the Metalated Ylide
[Cy3P-C-SO2Tol]M.
Z. Anorg. Allg. Chem. 2020, 1–8
6
© 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim