1270
M. Fayolle et al. / Bioorg. Med. Chem. Lett. 16 (2006) 1267–1271
Table 1. Ki/inhibition test for D-glucose uptake of various 3-O-D-
glucose derivatives against PfHT
presumably through the mechanism of increased hydro-
phobicity brought about by fluorinated fragments—
fluorine being a polar hydrophobic element.19 Converse-
ly, it is noteworthy that when hydrophilicity is increased,
as in compounds 26–29 in which an oxygen replaces car-
bon atoms in the chain,26 affinity is also decreased. All
these data show that a C8–C13 lipophilic chain should
be present in the substituent for it to inhibit PfHT-med-
iated glucose uptake in oocytes, which is the main con-
clusion which can be drawn from the affinity
measurements.
Compound R (O-3-substituent)
Kia (mM)
1
3
–(CH2)9–CH@CH2
–(CH2)6–CH3
–(CH2)7CH3
0.053 0.019
<0.5
4
0.030; 0.049b
0.035; 0.032b
0.029; 0.019b
0.023 0.002
0.030 0.008
>0.5
5
–(CH2)8–CH3
–(CH2)9–CH3
6
7
–(CH2)10–CH3
–(CH2)11–CH3
8
9
–(CH2)13–CH3
–(CH2)17–CH3
–(CH2)19–CH3
10
11
12
13
14
15
16
17
21
22
23
24
25
26
27
28
29
32
33
34
37
40
>0.5
c
Importantly, none of the derivatives displayed in the
table inhibited GLUT1 (the ubiquitous human glu-
cose transporter) at concentrations effective against
PfHT and the selectivity of 1 and congeners for
PfHT thus appears to be a salient feature of 3-O-
substituted glucose derivatives. Since the presence of
a C8–C13 lipophilic chain27 correlates with inhibition,
our structure–function analyses of the molecular
requirements for inhibition of the critical hexose
transporter of P. falciparum reinforce the Ôlollypop’
model previously put forward.5 This will hopefully
assist in the design of more potent inhibitors that
can be used as templates for drug design of carbohy-
drate-based antimalarials.
–(CH2)7–CH@CH2
–(CH2)8–CH@CH2
–(CH2)10–CH@CH2
–(CH2)13–CH@CH2
–(CH2)8–X–(CH2)7–COOCH3
0.041 0.002
0.049 0.004
0.036 0.004
0.037 0.009
>0.5
d
e
–(CH2)6–CH@CH–(CH2)7–CH3
–(CH2)5–C6H5
–(CH2)8–C6H5
>0.5
0.072; 0.064b
0.148 0.026
0.081
f
–(CH2)5–C6H4–(CH2)3–CH3
–(CH2)6–Fcg
–(CH2)11–Fcg
>0.5
NI
–(CH2)7–O–CH2–CH@CH2
–(CH2)2–O–(CH2)7–CH@CH2
–(CH2)2–O–CH2–CH@CH2
>0.5
0.590 0.072
>0.5
–(CH2)2–O(–CH2)2–O–CH2–CH@CH2 NI
–(CH2)3–(CF2)5–CF3
–(CH2)7–(CF2)5–CF3
–(CH2)3–NHCO–(CF2)5–CF3
Unsaturated Ôdimer’i
Saturated Ôdimer’i
>0.5
0.13h
NI
0.25; 0.14b
0.56; 0.54b
References and notes
a Values are means of three experiments (standard error of the mean
given) unless otherwise noted.
b Two experiments (i.e., two individual values).
c Too insoluble for assay. NI no inhibition.
d X denotes triple bond.
e Configuration of double bond is E.
f para-Isomer.
g Fc stands for ferrocene.
h Insufficient material to carry out repeats.
i For structures, see Scheme 6.
1. For reviews, see inter alia: (a) Ridley, R. G. Nature 2002,
415, 686; (b) Wiesner, J.; Ortmann, R.; Jomaa, H.;
Schlitzer, M. Angew. Chem., Int. Ed. Engl. 2003, 42,
5274; (c) Go, M.-L. Med. Res. Rev. 2003, 23, 456; (d)
Delhaes, L.; Benoit-Vical, F.; Camus, D.; Capron, M.;
Meunier, B. Drugs 2003, 6, 674; (e) Waters, N. C.; Dow, S.
G.; Kozar, M. P. Expert Opin. Ther. Pat. 2004, 14, 1125;
(f) Staines, H.; Ellory, J. C.; Chibale, K. Comb. Chem.
High Throughput Screening 2005, 8, 81.
2. Joe¨t, T.; Morin, C.; Fischbarg, J.; Louw, A. I.; Eckstein-
Ludwig, U.; Woodrow, C.; Krishna, S. Expert Opin. Ther.
Targets 2003, 7, 593.
with D-glucose; this led us to consider higher homo-
logues and hence the derivatives presented in the Table
1. As affinities in the 20–50 lM range are recorded for
4–7 (alkyl) and 12–15 (alkenyl) C8–C13 derivatives but
not for longer-chain derivatives (i.e., 9–11, 16 and 17),
this clearly shows that the chain length of the substituent
is important. A comparison of compounds with the
same substituent length but differing in the presence of
a terminal double bond (7 vs 1, 5 vs 12, 6 vs 13 and 8
vs 14) shows minimal consequences; however, in the case
of a longer chain (9 vs 15), the affinity is restored when a
terminal double bond is introduced. With regard to Ôdi-
mers’ 37 and 40 (which can be viewed as two hydrophilic
groups linked by a lipophilic chain) there is a ca. 10-fold
decrease in their affinities when compared to that of 1
(the parent compound). The introduction of an aromat-
ic ring, whether in the end position (21 and 22) or not
(23), decreases the affinity as well, whereas the presence
of ferrocenyl groups (24 and 25) results in loss of inhibi-
tion. Perfluorinated derivatives (32 and 34) do not
exhibit interaction with PfHT, or interact poorly (33),
3. Woodrow, C. J.; Penny, J. I.; Krishna, S. J. Biol. Chem.
1999, 274, 7272.
4. Woodrow, C. J.; Burchmore, R. J. S.; Krishna, S. Proc.
Natl. Acad. Sci. U.S.A. 2000, 97, 9931.
5. Joe¨t, T.; Eckstein-Ludwig, U.; Morin, C. Proc. Natl. Acad.
Sci. U.S.A. 2003, 100, 7476.
6. For the preparation of O-3 alkyl glucose, see, for example:
Ikegawa, T.; Irinoda, K.; Saze, K.; Katori, T.; Matsuda, H.;
Ohkawa, M.; Kosik, M. Chem. Pharm. Bull. 1987, 35, 2894.
7. Fryxell, G. E.; Rieke, P. C.; Wood, L. L.; Engelhard, M. H.;
Williford, R. E.; Graff, G. L.; Campbel, A. A.; Wiacek, R.
J.; Lee, L.; Halverson, A. Langmuir 1996, 12, 5064.
8. Kates, M. J.; Schaube, J. H. J. Org. Chem. 1996, 61, 4164.
9. Singh, A. N.; Mhaskar, V. V.; Dev, S. Tetrahedron 1978,
34, 595.
10. For another synthesis, see: Subramanian, G. B. V.; Ahua,
S. Indian J. Chem. 1996, 35B, 724.
11. a,x-Dibromoalkanes with phenyllithium: Spencer, T. A.;
Onafrey, T. J.; Cann, R. O.; Russel, J. S.; Lee, L. E.;
Blanchard, D. E.; Castro, A.; Gu, P.; Jiang, G.; Shechter,
I. J. Org. Chem. 1999, 64, 807.
12. a,x-Dibromoalkanes with p-butylphenylmagnesium bro-
mide: Nishimura, J.; Yamada, N.; Horiuchi, Y.; Ueda, E.;