10.1002/chem.202003209
Chemistry - A European Journal
RESEARCH ARTICLE
10.
11.
a) C. Sanchez-Sanchez, E. Perez-Inestrosa, R. Garcia-Segura, R.
Suau, Tetrahedron 2002, 58, 7267; b) F. Hatoum, J. Engler, C. Zelmer,
J. Wissen, C. A. Motti, J. Lex, M. Oelgemçller, Tetrahedron Lett. 2012,
53, 5573; c) N. Kise, S. Isemoto, T. Sakurai, Tetrahedron 2012, 68,
8805.
Isolation of the substrate 49 (as shown in Scheme 5) was
conclusive evidence for an aminol intermediacy in our
transformation.
a) N. G. Kundu, M. W. Khan, R. Mukhopadhyay, Tetrahedron 1999, 55,
12361; b) C. Koradin, W. Dohle, A. L. Rodriguez, B. Schmid, P.
Knochel, Tetrahedron 2003, 59, 1571; c) T. Yao, R. C. Larock, J. Org.
Chem. 2005, 70, 1432;
Conclusion
12.
13.
a) N. G. Kundu, M. W. Khan, Tetrahedron 2000, 56, 4777; b) C.
Kanazawa, M. Terada, Chem. –Asian J. 2009, 4, 1668.
In summary, we herein report a serendipitous obervation of an
one-pot transformation of 2’-haloacetophenones to 3-
methyleneisoindolin-1-ones, an important class of heterocycles.
This reaction was carefully optimized further to synthesize a
wide range of derivatives in good to excellent yields, exhibiting
good scalability under a set of simple reaction conditions. This
method has also been successfully extrapolated towards the
synthesis of three drug analogues, including the one carbon
a) M. J. Wu, L. J. Chang, L. M. Wei, C. F. Lin, Tetrahedron 1999, 55,
13193; b) W. D. Lu, C. F. Lin, C. J. Wang, S. J. Wang, M. J. Wu,
Tetrahedron 2002, 58, 7315.
14.
15.
K. Kobayashi, K. Matsumoto, D. Nakamura, S. Fukamachi, H. Konishi,
Helv. Chim. Acta. 2010, 93, 1048.
a) S. Couty, B. Liegault, C. Meyer, J. Cossy, Org. Lett. 2004, 6, 2511;
b) S. Couty, B. Liegault, C. Meyer, J. Cossy, Tetrahedron 2006, 62,
3882.
lower analogue of AKS-186, which is
a
well known
16.
17.
H. Cao, L. McNamee, H. Alper, Org. Lett. 2008, 10, 5281.
vasoconstriction inhibitor. The fact that moisture-free or
anaerobic conditions are not necessary and only CuCN is
enough to achieve this transformation makes it one of the
efficient methods for the construction of these biologically
important scaffolds.
a) L. Li, M. Wang, X. Zhang, Y. Jiang, D. Ma, Org. Lett. 2009, 11, 1309;
b) M. Hellal, G. D. Cuny, Tetrahedron Lett. 2011, 52, 5508.; c) A.
Bubar, P. Estey, M. Lawson, S. Eisler, J. Org. Chem. 2012, 77, 1572.
a) F. M. Irudayanathan, J. Noh, J. Choi, S. Lee, Adv. Synth. Catal.
2014, 356, 3433; b) A. Gogoi, S. Guin, S. K. Rout, G. Maji, B. K. Patel,
RSC Adv. 2014, 4, 59902.
18.
19.
a) J. W. Wrigglesworth, B. Cox, G. C. Lloyd-Jones, K. I. Booker-
Milburn, Org. Lett. 2011, 13, 5326; b) D-D. Li, T-T. Yuan, G-W. Wang,
Chem. Commun. 2011, 47, 12789; c) X. Wei, F. Wang, G. Song, Z. Du,
X. Li, Org. Biomol. Chem. 2012, 10, 5521; d) S. Cai, C. Chen, P. Shao,
C. Xi, Org. Lett. 2014, 16, 3142; e) A. M. Martinez, N. Rodriguez, R. G.
Arrayas, J. C. Carretero, Chem. Commun. 2014, 50, 6105; f) J. Zhou,
B. Li, Z-C. Qian, B-F. Shi, Adv. Synth. Catal. 2014, 356, 1038; g) J. K.
Laha, M. K. Hunjan, R. A. Bhimpuria, D. Kathuria, P. V. Bharatam, J.
Org. Chem. 2017, 82, 7346; h) M. C. Reddy, M. Jeganmohan, Org.
Lett. 2014, 16, 4866; i) M. C. Reddy, M. Jeganmohan, Chem. Sci.
2017, 8, 4130; j) F. W. Patureau, T. Besset, F. Glorius, Angew. Chem.,
Int. Ed. 2011, 50, 1064; k) S. W. Youn, T. Y. Ko, Y. H. Kim, Y. A. Kim,
Org. Lett. 2018, 20, 7869; l) W-W. Ji, E. Lin, Q. Li, H. Wang, Chem.
Commun. 2017, 53, 5665.
Acknowledgements
K.P.K gratefully acknowledges SERB (EMR/2017/000578) for
the financial support. T.B acknowledges IIT Bombay for
fellowship. The instrumental facility of IIT Bombay is gratefully
acknowledged.
Keywords: 3-methyleneisoindolin-1-one • Heterocycles •
Cyanation • Enamide formation • One-pot transformation
20.
21.
J. Dong, F. Wang, J. You, Org. Lett. 2014, 16, 2884.
a) P. Subramanian, K. P. Kaliappan, Eur. J. Org. Chem. 2013, 595; b)
P. Subramanian, K. P. Kaliappan, Eur. J. Org. Chem. 2014, 5986; c) P.
Subramanian, S. Indu, K. P. Kaliappan, Org. Lett. 2014, 16, 6212; d) S.
Indu, P. Subramanian, K. P. Kaliappan, Eur. J. Org. Chem. 2014, 7193;
e) P. Subramanian, G. C. Rudolf, K. P. Kaliappan, Chem. –Asian J.
2015, 11, 168; f) A. Banerjee, P. Subramanian, K. P. Kaliappan, J.
Org. Chem. 2016, 81, 10424; g) P. R. Sakhare, P. Subramanian, K. P.
Kaliappan, J. Org. Chem. 2019, 84, 2112; h) P. Subramanian, K. P.
Kaliappan, Eur. J. Org. Chem. doi.org/10.1002/ejoc.202000428; i) M.
Brendel, P. R. Sakhare, G. Dahiya, P. Subramanian, K. P. Kaliappan, J.
Org. Chem. 2020, 85, 8102.
1.
2.
M. S. Butler, J. Nat. Prod. 2004, 67, 2141.
a) Tietze, L. F.; Brasche, G.; Gericke, K. M. Domino Reactions in
Organic Synthesis, Wiley-VCH, Weinheim, 2006; b) Tietze, L. F. Chem.
Rev. 1996, 96, 115; c) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G.
Angew. Chem., Int. Ed. 2006, 45, 7134; d) Hayashi, Y. Chem. Sci.
2016, 7, 866.
3.
4.
5.
6.
7.
8.
a) Wender, P. A.; Verma, V. A.; Paxton, T. J.; Pillow, T. H. Acc. Chem.
Res. 2008, 41, 40; b) Trost, B. M. Science 1991, 254, 1471.
T. Banik, V. V. Betkekar, K. P. Kaliappan, Chem. –Asian J. 2018, 13,
3676.
E. Mertz, S. Mattei, S. C. Zimmerman, Bioorg. Med. Chem. 2004, 12,
1517.
22.
a) K. W. Rosenmund, E. Struck,. Ber. Dtsch. Chem. Ges. 1919, 2,
1749; b) D. T. Mowry, Chem. Rev. 1948, 42, 189; c) G. P. Ellis, T. M.
Romney-Alexander, Chem. Rev. 1987, 87, 779; d) J. Zanon, A.
Klapars, S. L. Buchwald, J. Am. Chem. Soc. 2003, 125, 2890; e) H-J.
Cristau, A. Ouali, J-F. Spindler, M. Taillefer, Chem. –Eur. J. 2005, 11,
2483; f) T. Schareina, A. Zapf, M. Beller, Tetrahedron Lett. 2005, 46,
2585; g) T. Schareina, A. Zapf, W. Magerlein, N. Muller, M. Beller,
Chem. –Eur. J. 2007, 13, 6249; h) T. Schareina, A. Zapf, W. Magerlein,
N. Muller, M. Beller, Synlett 2007, 555. i) Q. Wen, J. Jin, L. Zhang, Y.
Luo, P. Lu, Y. Wang, Tetrahedron Lett. 2014 , 55, 1271.
T. Lei, Y. Cao, Y. Fan, C.-J. Liu, S.-C. Yuan, J. Pei, J. Am. Chem. Soc.
2011, 133, 6099.
Y.-C. Chia, F.-R. Chang, C.-M. Teng, Y.-C. Wu, J. Nat. Prod. 2000, 63,
1160.
a) A. Couture, E. Deniau, P. Grandclaudon, C. Hoarau, Tetrahedron
2000, 56, 1491; b) V. Rys, A. Couture, E. Deniau, P. Grandclaudon,
Tetrahedron 2003, 59, 6615; c) A. Moreau, A. Couture, E. Deniau, P.
Grandclaudon, J. Org. Chem. 2004, 69, 4527; d) M. Lamblin, A.
Couture, E. Deniau, P. Grandclaudon, Tetrahedron 2006, 62, 2917; e)
M. Lamblin, A. Couture, E. Deniau, P. Grandclaudon, Org. Biomol.
Chem. 2007, 5, 1466; f) S. Mumtaz, M. J. Robertson, M. Oelgemoller,
Molecules 2019, 24, 4527.
23.
a) M. D. Varney, G. P. Marzoni, C. L. Palmer, J. G. Deal, S. Webber, K.
M. Welsh, R. J. Bacquet, C. A. Bartlett, C. A. Morse, J. Med. Chem.
1992, 35, 663; b) H. Yin, Y. Xu, X. Qian, Bioorg. Med. Chem. 2007, 15,
1356; c) A. Kamal, G. Ramakrishna, V. L. Nayak, P. Raju, A. S. V. Rao,
A. Viswanath, M. V. P. S. Vishnuvardhan, S. Ramakrishna, G. Srinivas,
Bioorg. Med. Chem. 2012, 20, 789 d) X. Xue, Y. Zhang, Z. Liu, M.
Song, Y. Xing, Q. Xiang, Z. Wang, Z. Tu, Y. Zhou, K. Ding, Y. Xu, J.
9.
a) A. Couture, E. Deniau, P. Grandclaudon, Tetrahedron 1997, 53,
10313; b) M. A. Reyes-Gonzalez, A. Zamudio-Medina, M. Ordonez,
Tetrahedron Lett. 2012, 53, 5756.
5
This article is protected by copyright. All rights reserved.