Journal of the American Chemical Society
Article
Ph
believe the P−C bond cleavage is metal-mediated and occurs
from the initial [(N^O)Ni(II)R(PPh3)] complex. Also, P−C
bond cleavage could be an explanation for higher efficiency for
radical polymerizations with [Ni] complexes when additional
phosphine is added, which was reported repeatedly previ-
ously20,41 and was also observed in our experiments. (4) A
second radical source, much more specific to the nickel
complexes under investigation, is one electron oxidation/single
electron transfer from intermediately formed [Ni(0)] species to
aryl halides, for example, the aryl iodide moiety of the N^O
ligand, whereby metal-centered Ni(I) and ligand-based aryl
radicals are formed (Scheme 4, red). (5) With respect to the
generation of [Ni(0)] species, we have identified several reaction
pathways: (a) reductive elimination of (N^O)H from (N^O)Ni
hydride complexes formed during chain transfer in the ethylene
Structure of 3
(CCDC Number: 1432841) (CIF)
PPh3
Synthetic procedures, characterizations of complexes,
spectroscopic data for key experiments, and experimental
and calculation details (PDF)
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was financially supported by the DFG (Grant Me
1388/10-2). The authors thank Michael Gießl and Julia
Zimmerer for performing pressure reactor experiments, Anke
Friemel and Ullrich Haunz for technical assistance with NMR
measurements, Lars Bolk for DSC and SEC measurements, and
Evelyn Wuttke for technical support with EPR measurements.
+
polymerization; (b) reductive elimination of MeP(aryl)3 from
(N^O)Ni methyl phosphine complexes; (c) a relevant
alternative pathway, especially at high [Ni] concentrations as
present in NMR experiments, is a bimolecular reductive coupling
([Ni−R] + [Ni−R′] → R-R′ + 2 [Ni(I)]). We have studied this
reaction in detail for [Ni−H] species (Scheme 4, orange top
pathway) and identified the intermediate formation of [(N^O)-
Ni(I)(PPh3)2], which underwent a further disproportionation
reaction ultimately leading to the observed formation of
[(N^O)2Ni(II)] and [Ni(0)(PPh3)4]. This pathway can proceed
under mild conditions with involvement of [Ni−H] species and
is believed to proceed in a similar manner under more harsh
conditions also for [Ni−Me] and [Ni−Ph] complexes. In
simultaneous polymerizations of ethylene and MMA, the
initiation process was found to be significantly faster than in
polymerizations of MMA alone. This is traced to a fast ethylene
insertion into the catalyst precursors, which yields [Ni−alkyl]
complexes. These readily undergo β-H elimination, and reactive
[Ni−H] species form, which decompose by bimolecular
reductive coupling and finally form [Ni(0)] species. These
[Ni(0)] species react with aryl halide functionalities in the
specific (N^O) ligands and initiate a free radical chain growth.
(6) Intermediately formed [Ni(I)] species may be transformed
into insertion polymerization active Ni(II) (aryl/alkyl) prior to
disproportionation into Ni(0) complexes and polymerization
inactive bis(chelate) nickel(II) by addition of azo-compounds
(Scheme 4, purple). By using this strategy, the overall
productivity of an exemplified catalyst studied here has been
increased by a factor of 6 in ethylene polymerizations due to
regeneration of insertion polymerization active species. It has to
be emphasized that an analogous recombination of [Ni(I)]
species with growing PMMA radicals cannot be excluded.
However, since the insertion products of MMA into [Ni−H]
and [Ni−Ph] undergo rapid β-hydride elimination rather than
ethylene insertion, the formation of PMMA−PE block
copolymers is precluded.
REFERENCES
■
(1) Nakamura, A.; Ito, S.; Nozaki, K. Chem. Rev. 2009, 109, 5215−44.
(2) (a) Johnson, L. K.; Mecking, S.; Brookhart, M. J. Am. Chem. Soc.
1996, 118, 267−8. (b) Mecking, S.; Johnson, L. K.; Wang, L.; Brookhart,
M. J. Am. Chem. Soc. 1998, 120, 888−99.
(3) Drent, E.; van Dijk, R.; van Ginkel, R.; van Oort, B.; Pugh, R. I.
Chem. Commun. 2002, 744−5.
(4) Nakamura, A.; Anselment, T. M. J.; Claverie, J.; Goodall, B.; Jordan,
R. F.; Mecking, S.; Rieger, B.; Sen, A.; van Leeuwen, P. W. N. M.;
Nozaki, K. Acc. Chem. Res. 2013, 46, 1438−49.
(5) Kochi, T.; Noda, S.; Yoshimura, K.; Nozaki, K. J. Am. Chem. Soc.
2007, 129, 8948−9.
(6) Ito, S.; Munakata, K.; Nakamura, A.; Nozaki, K. J. Am. Chem. Soc.
2009, 131, 14606−7.
(7) Runzi, T.; Frohlich, D.; Mecking, S. J. Am. Chem. Soc. 2010, 132,
̈
̈
17690−1.
(8) Guironnet, D.; Roesle, P.; Runzi, T.; Gottker-Schnetmann, I.;
Mecking, S. J. Am. Chem. Soc. 2009, 131, 422−3.
(9) Runzi, T.; Guironnet, D.; Gottker-Schnetmann, I.; Mecking, S. J.
̈
̈
̈
̈
Am. Chem. Soc. 2010, 132, 16623−30.
(10) (a) Wang, C. M.; Friedrich, S.; Younkin, T. R.; Li, R. T.; Grubbs,
R. H.; Bansleben, D. A.; Day, M. W. Organometallics 1998, 17, 3149−51.
(b) Johnson, L. K.; Bennett, A. M. A.; Ittel, S. D.; Wang, L.;
Parthasarathy, A.; Hauptman, E.; Simpson, R. D.; Feldman, J.; Coughlin,
E. B. (E. I. du Pont de Nemours & Co., USA) International Patent WO
98/30609, 1998.
(11) (a) Zuideveld, M. A.; Wehrmann, P.; Rohr, C.; Mecking, S. Angew.
Chem. 2004, 116, 887−91. (b) Tong, Q.; Krumova, M.; Gottker-
̈
̈
Schnetmann, I.; Mecking, S. Langmuir 2008, 24, 2341−7. (c) Osichow,
A.; Rabe, C.; Vogtt, K.; Narayanan, T.; Harnau, L.; Drechsler, M.;
Ballauff, M.; Mecking, S. J. Am. Chem. Soc. 2013, 135, 11645−50.
(12) Younkin, T. R.; Connor, E. F.; Henderson, J. I.; Friedrich, S. K.;
Grubbs, R. H.; Bansleben, D. A. Science 2000, 287, 460−2.
(13) Connor, E. F.; Younkin, T. R.; Henderson, J. I.; Hwang, S.;
Grubbs, R. H.; Roberts, W. P.; Litzau, J. J. J. Polym. Sci., Part A: Polym.
Chem. 2002, 40, 2842−54.
ASSOCIATED CONTENT
* Supporting Information
■
S
(14) Waltman, A. W.; Younkin, T. R.; Grubbs, R. H. Organometallics
2004, 23, 5121−3.
(15) Berkefeld, A.; Drexler, M.; Moller, H. M.; Mecking, S. J. Am.
The Supporting Information is available free of charge on the
̈
Chem. Soc. 2009, 131, 12613−22.
Structure of 1PPPhh (CCDC Number: 1432837) (CIF)
(16) Berkefeld, A.; Mecking, S. J. Am. Chem. Soc. 2009, 131, 1565−74.
(17) He, X.; Wu, Q. Appl. Organomet. Chem. 2006, 20, 264−71.
(18) Li, X.-F.; Li, Y.-G.; Li, Y.-S.; Chen, Y.-X.; Hu, N.-H.
Organometallics 2005, 24, 2502−10.
3
Ph
Structure of 2 (CCDC Number: 1432838) (CIF)
PPh3
Structure of {3-3} (CCDC Number: 1432839) (CIF)
Structure of [(N^O)iPr,tBu‑HNi(μ2-OH)2Ni(N^O)iPr,tBu‑H
]
(19) (a) Rodriguez, B. A.; Delferro, M.; Marks, T. J. J. Am. Chem. Soc.
2009, 131, 5902−19. (b) Rodriguez, B. A.; Delferro, M.; Marks, T. J. J.
Am. Chem. Soc. 2013, 135, 17651.
(CCDC Number: 1432840) (CIF)
PPh3
Structure of 3 (CCDC Number: 1432842) (CIF)
PPh3
I
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX