10.1002/anie.201801085
Angewandte Chemie International Edition
COMMUNICATION
Lett. 2017, 19, 1744-1747; (c) T. Thaler, L.-N. Guo, P. Mayer, P. Knochel,
Angew. Chem., Int. Ed. 2011, 50, 2174-2177; (d) J. He, M. Wasa, K. S.
L. Chan, J.-Q. Yu, J. Am. Chem. Soc. 2013, 135, 3387-3390; (e) L.
Huang, A. M. Olivares, D. J. Weix, Angew. Chem., Int. Ed. 2017, 56,
11901-11905.
[2]
(a) T. Hatakeyama, Y. Okada, Y. Yoshimoto, M. Nakamura, Angew.
Chem., Int. Ed. 2011, 50, 10973-10976; (b) H. Ohmiya, H. Yorimitsu, K.
Oshima, Org. Lett. 2006, 8, 3093-3096; (c) O. Vechorkin, A. Godinat, R.
Scopelliti, X. Hu, Angew. Chem., Int. Ed. 2011, 50, 11777-11781; (d) C.
W. Cheung, P. Ren, X. Hu, Org. Lett. 2014, 16, 2566-2569; (e) J. Caeiro,
J. Pérez Sestelo, L. A. Sarandeses, Chem. Eur. J. 2008, 14, 741-746; (f)
J. M. Smith, T. Qin, R. R. Merchant, J. T. Edwards, L. R. Malins, Z. Liu,
G. Che, Z. Shen, S. A. Shaw, M. D. Eastgate, P. S. Baran, Angew. Chem.,
Int. Ed. 2017, 56, 11906-11910.
[3]
(a) F. Le Vaillant, T. Courant, J. Waser, Angew. Chem., Int. Ed. 2015, 54,
11200-11204; (b) X. Liu, Z. Wang, X. Cheng, C. Li, J. Am. Chem. Soc.
2012, 134, 14330-14333; (c) H. Huang, G. Zhang, L. Gong, S. Zhang, Y.
Chen, J. Am. Chem. Soc. 2014, 136, 2280-2283; (d) C. Yang, J.-D. Yang,
Y.-H. Li, X. Li, J.-P. Cheng, J. Org. Chem. 2016, 81, 12357-12363.
J. Yang, J. Zhang, L. Qi, C. Hu, Y. Chen, Chem. Commun. 2015, 51,
5275-5278.
[4]
[5]
Scheme 3. Mechanistic experiments
For an example of light-promoted alkylation of aryl acetylenes in the
absence of a copper catalyst, see: W. Liu, L. Li, C.-J. Li, Nature
Communications 2015, 6, 6526.
Overall, we have developed a photoinduced, copper-
catalyzed coupling of terminal alkynes with unactivated primary,
secondary, and tertiary alkyl iodides. The reaction has a broad
substrate scope and is compatible with esters, nitriles, alcohols,
amides, epoxides, aryl halides, and ethers. The key for the
success of the reaction is the tri tert-butyl terpyridine ligand which
favors the productive alkylation at the expense of the
photoinduced copper-catalyzed polymerization of the starting
materials. The alkylation reaction proceeds through a direct
coupling between copper acetylide and an unactivated alkyl
iodide, most likely with the involvement of free-radical
intermediates
[6]
G. Evano, K. Jouvin, C. Theunissen, C. Guissart, A. Laouiti, C. Tresse,
J. Heimburger, Y. Bouhoute, R. Veillard, M. Lecomte, A. Nitelet, S.
Schweizer, N. Blanchard, C. Alayrac, A. C. Gaumont, Chem. Commun.
2014, 50, 10008-10018.
[7]
[8]
L. Jin, W. Hao, J. Xu, N. Sun, B. Hu, Z. Shen, W. Mo, X. Hu, Chem.
Commun. 2017, 53, 4124-4127.
(a) F.-X. Luo, X. Xu, D. Wang, Z.-C. Cao, Y.-F. Zhang, Z.-J. Shi, Org.
Lett. 2016, 18, 2040-2043; (b) Y. Yamane, N. Miwa, T. Nishikata, ACS
Catalysis 2017, 7, 6872-6876.
[9]
(a) P. Maity, H. D. Srinivas, M. P. Watson, J. Am. Chem. Soc. 2011, 133,
17142-17145; (b) H. D. Srinivas, P. Maity, G. P. A. Yap, M. P. Watson,
J. Org. Chem. 2015, 80, 4003-4016; (c) S. Dasgupta, T. Rivas, M. P.
Watson, Angew. Chem., Int. Ed. 2015, 54, 14154-14158.
[10] (a) H.-P. Bi, L. Zhao, Y.-M. Liang, C.-J. Li, Angew. Chem., Int. Ed. 2009,
48, 792-795; (b) C. Zhang, D. Seidel, J. Am. Chem. Soc. 2010, 132,
1798-1799; (c) H. Zhang, P. Zhang, M. Jiang, H. Yang, H. Fu, Org. Lett.
2017, 19, 1016-1019.
Experimental Section
In a nitrogen-filled glovebox, a 1.5-dram vial was charged with a Teflon
coated stir bar, CuCl (5.0 mg, 0.05 mmol, 0.10 equiv.), 4,4',4''-tri-tert-butyl-
2,2':6',2''-terpyridine (40.0 mg, 0.10 mmol, 0.20 equiv.) and K2CO3 (207.3
mg, 1.50 mmol, 3.0 equiv.). A mixture of 1:3 methanol in acetonitrile (5 mL,
0.1 M) and alkyne (0.50 mmol, 1.0 equiv.) were then added. Alkyl iodide
(1.00 mmol, 2 equiv.) was added to the reaction vessel, which was then
capped and the reaction mixture was stirred vigorously under the
irradiation of blue light in the reaction chamber (Fig. S1). After the indicated
time, the reaction was stopped. The reaction mixture was filtered through
a pad of silica gel and washed with EtOAc and DCM. The filtrate was
concentrated under reduced pressure and purified by silica gel
chromatography.
[11] (a) R. Chinchilla, C. Nájera, Chem. Rev. 2007, 107, 874-922; (b) R.
Chinchilla, C. Najera, Chem. Soc. Rev. 2011, 40, 5084-5121.
[12] M. Eckhardt, G. C. Fu, J. Am. Chem. Soc. 2003, 125, 13642-13643.
[13] (a) P. M. Pérez García, P. Ren, R. Scopelliti, X. Hu, ACS Catalysis 2015,
5, 1164-1171; (b) O. Vechorkin, D. Barmaz, V. Proust, X. Hu, J. Am.
Chem. Soc. 2009, 131, 12078-12079.
[14] (a) G. Altenhoff, S. Würtz, F. Glorius, Tetrahedron Lett. 2006, 47, 2925-
2928; (b) J. Yi, X. Lu, Y.-Y. Sun, B. Xiao, L. Liu, Angew. Chem., Int. Ed.
2013, 52, 12409-12413.
[15] (a) Oral permitted daily exposure values recommended by Food and
Drug Administration are 200 µg/day for Ni, 100 µg/day for Pd, and 3000
µg/day for Cu. See: "Q3D Elemental Impurities Guidance for Industry",
U.S. Department of Health and Human Services, Food and Drug
Administration, September 2015; For European standards, see: (b)
European Medicines Agency, Committee for medicinal products for
human use, "Guideline on the specification limits for residues of metal
catalysts of metal reagents", London, 2008
Acknowledgements
Financial support by NSF is acknowledged (NSF CAREER Award
1254636).
[16] (a) S. E. Creutz, K. J. Lotito, G. C. Fu, J. C. Peters, Science 2012, 338,
647-651; (b) C. Uyeda, Y. Tan, G. C. Fu, J. C. Peters, J. Am. Chem. Soc.
2013, 135, 9548-9552; (c) Y. Tan, J. M. Munoz-Molina, G. C. Fu, J. C.
Peters, Chem. Sci. 2014, 5, 2831-2835.
Keywords: keyword 1 • keyword 2 • keyword 3 • keyword 4 •
keyword 5
[17] A. Sagadevan, K. C. Hwang, Adv. Synth. Catal. 2012, 354, 3421-3427.
[18] For recent overview of photocatalysis involving copper complexes, see:
(a) O. Reiser, Acc. Chem. Res. 2016, 49, 1990-1996; (b) S. Paria, O.
Reiser, ChemCatChem 2014, 6, 2477-2483.
[1]
(a) G. Cahiez, O. Gager, J. Buendia, Angew. Chem., Int. Ed. 2010, 49,
1278-1281; (b) Y. Shen, B. Huang, J. Zheng, C. Lin, Y. Liu, S. Cui, Org.
This article is protected by copyright. All rights reserved.