6 which adopt a bent conformation; (ii) as in the previous case,
both nitrogen atoms of the diaza core show a marked sp2
character with an average C–N–C angle of ca. 121.1° and N–C
distance of 1.36 Å; (iii) the coordination geometry around Ag
atoms is almost linear with an average N–Ag–N angle of ca.
175.8°; (iv) the average N–Ag distance is ca. 2.10 Å; (v) the
Ag···Ag distance is 3.36 Å; (vi) quite interestingly, in the crystal
the metallamacrocycles form a one dimensional network
through four strong silver–aromatic (pyridine) interactions per
unit with an average Ag–centroid distance of 3.43 Å (Fig. 4).
In conclusion, it has been demonstrated that a class of exo
ligands based on the interconnection of two p-aminopyridines
forms by self-assembly metallamacrocycles in the presence of
PdII or AgI metals. A systematic investigation on the role of the
conformation of the cyclic core is under current investigation.
N
C
Pd
Fig. 2 Crystal structure of the [62{Pd(en)}2 (NO3)4] metallamacrocycle (see
text for bond angles and distances). Solvent molecules, anions and H atoms
are not presented for sake of calrity.
Notes and References
† E-mail: hosseini@chimie.u-strasbg.fr
‡
Crystallographic data: [62{Pd(en)}2(NO3)4] (colorless, 173 K):
2+
C19H30N6Pd·4NO3·2C2H5OH·5H2O, M = 1328.02, monoclininc, space
group P21/c, a = 13.005(2) b = 16.532(2), c = 13.622(1) Å, U = 2927(1)
Å3, b = 91.603(9)°, Z = 2, Dc = 1.34 g cm23, MACH3 Nonius, Mo-Ka,
m/mm21 = 0.657, 4549 data with I > 3s(I), R = 0.057, Rw = 0.075.
[62Ag2(PF6)2] (colorless, 173 K): C34H44N8Ag2·2PF6, M = 1070.45,
monoclinic, space group P21/c, a = 7.6250(2), b = 23.5140(9), c =
10.9360(4) Å, b = 93.105(7)°, U = 1957.9(2) Å3, Z = 2, Dc = 1.82
g cm23, Nonius Kappa CCD, Mo-Ka, m/mm21 = 1.164, 2958 data with
I > 3s(I), R = 0.053, Rw = 0.073. CCDC 182/885.
N
N
N
N
Ag
Ag
N
N
N
N
–
2PF6
2+
N
N
N
N
Ag
Ag
N
N
N
N
–
2PF6
1 M. Fujita, J. Yakaki and K. Ogura, J. Am. Chem. Soc., 1990, 112, 5645;
M. Fujita, J. Synth. Org. Chem. Jpn., 1996, 54, 953.
2 R. W. Saalfrank, A. Stark, K. Peters and H.-G. von Schnering, Angew.
Chem., Int. Ed. Engl., 1988, 27, 851.
3 J. K. M. Sanders, Comprehensive Supramolecular Chemistry, ed. J. L.
Atwood, J. E. D. Davies, D. D. MacNicol and F. Vo¨gtle, vol. 9 (ed. J. P.
Sauvage and M. W. Hosseini), Elsevier, Amsterdam, 1996, pp.
131–164; P. J. Stang and B. Olenyuk, Acc. Chem. Res., 1997, 30, 502;
C. M. Drain and J.-M. Lehn, J. Chem. Soc., Chem. Commun., 1994,
2313; T. Beissel, R. E. Powers and K. N. Raymond, Angew. Chem., Int.
Ed. Engl., 1996, 35, 1084.
Fig. 3 Two possible isomeric structures D2h (top) and C2v (bottom) for the
[62Ag2] metallamacrocycle
C
N
Ag
4 C. V. Krishnamohan Sharma, S. T. Griffin and R. D. Rogers, Chem.
Commun., 1998, 215; R.-D. Schnebeck, L. Randaccio, E. Zangrando
and B. Lippert, Angew. Chem., Int. Ed. Engl., 1998, 37, 119; J. R. Hall,
S. J. Loeb, G. K. H. Shimizu and G. P. A. Yap, Angew. Chem., Int. Ed.
Engl., 1998, 37, 121.
5 R. Robson, in Comprehensive Supramolecular Chemistry, ed. D. D.
Macnicol, F. Toda and R. Bishop, Pergamon, New York, 1996, vol. 6,
p. 733; L. Carluci, G. Ciani, D. M. Proserpio and A. Sironi, J. Am. Chem.
Soc., 1995, 117, 4562; T. L. Hennigar, D. C. MacQuarrie, P. Losier,
R. D. Rogers and M. J. Zaworotko, Angew. Chem., Int. Ed. Engl., 1997,
36, 972; M. A. Withersby, A. J. Blake, N. R. Champness, P. Hubberstey,
W.-S. Li and M. Schro¨der, Angew. Chem., Int. Ed. Engl., 1997, 36,
2327; D. Whang and K. Kim, J. Am. Chem. Soc., 1997, 119, 451; O. M.
Yaghi, H. Li and T. L. Groy, Inorg. Chem., 1997, 36, 4292.
6 C. Kaes, M. W. Hosseini, R. Ruppert, A. De Cian and J. Fischer,
Tetrahedron Lett., 1994, 35, 7233; J. Chem. Soc., Chem. Commun.,
1995, 1445; C. Kaes, M. W. Hosseini, A. De Cian and J. Fischer,
Tetrahedron Lett., 1997, 38, 3901; 4389; Chem. Commun., 1997, 229.
7 E. Graf, M. W. Hosseini and R. Ruppert, Tetrahedron Lett., 1994, 35,
7779; C. Drexler, M. W. Hosseini, A. De Cian and J. Fischer,
Tetrahedron Lett., 1997, 38, 2993; C. M. Drexler, M. W. Hosseini, G.
Stupka, J.-M. Planeix, A. De Cian and J. Fischer, Chem. Commun.,
1998, 689; G. Mislin, E. Graf and M. W. Hosseini, Tetrahedron Lett.,
1996, 37, 4503.
8 X. Delaigue, J. McB. Harrowfield, M. W. Hosseini, A. De Cian, J.
Fischer and N. Kyritsakas, J. Chem. Soc., Chem. Commun., 1994, 1579;
X. Delaigue, M. W. Hosseini, A. De Cian, N. Kyritsakas and J. Fischer,
J. Chem. Soc., Chem. Commun., 1995, 609.
9 R. W. Alder, Acc. Chem. Res., 1983, 16, 321.
10 G. Brand, M. W. Hosseini and R. Ruppert, Tetrahedron Lett., 1994, 35,
8609.
11 R. Schneider, M. W. Hosseini and J.-M. Planeix, Tetrahedron Lett.,
1996, 35, 4721.
12 T. Kauffmann and F.-P. Boettcher, Chem. Ber., 1962, 88, 1528.
13 H. Yamamoto and K. Maruoka, J. Am. Chem. Soc., 1981, 103, 4186.
Fig. 4 A portion of the crystal structure of the [62Ag2(PF6)2] metal-
lamacrocycle (see text for bond angles and distances) showing the
formation of an infinite network formed by double Ag–aromatic inter-
actions between consecutive units. Anions and H atoms are not presented
for sake of clarity.
The formation of metallamacrocycles using AgI was investi-
gated by diffusion at room temp. of a EtOH solution of ligand
6 with an aqueous solution of AgPF6. After several days
colourless crystals of the complex were filtered and further
washed with Et2O. The complex was characterised by NMR and
by FAB spectrometry. Furthermore, in the solid state the
structure of [62Ag2(PF6)2] complex was elucidated by X-ray
crystallography.‡ Again, as in the above mentioned Pd case,
two different isomeric complexes may be envisagted (Fig. 3).
Once again the complex with C2v symmetry was observed (Fig.
4). The crystal analysis showed the following features: (i) the
binuclear metallamacrocycle is formed through the bridging of
two AgI atoms by two pyridine units belonging to two ligands
Received in Basel, Switzerland, 27th April 1998, 8/03166E
1626
Chem. Commun., 1998