W. Xu et al.
that of similar catalyst systems.[41] Finally, several fluorescent diynes
have been prepared using the protocol developed in our laboratory.
Acknowledgments
This work was financially supported by the 111 Project (B14041), Na-
tional Natural Science Foundation of China (21171112, 21271124,
21371112), Fundamental Doctoral Fund of Ministry of Education of
China (20120202120005), Natural Science Basic Research Plan in
Shaanxi Province of China (2012JM2006) and Shaanxi Innovative
Team of Key Science and Technology (2013KCT-17).
References
[1] B. B. Touré, D. G. Hall, Chem. Rev. 2009, 109, 4439.
[2] G. Evano, N. Blanchard, M. Toumi, Chem. Rev. 2008, 108, 3054.
[3] L. X. Yin, J. Liebscher, Chem. Rev. 2007, 107, 133.
[4] J. Magano, J. R. Dunetz, Chem. Rev. 2011, 111, 2177.
[5] M. C. Pacheco, S. Purser, V. Gouverneur, Chem. Rev. 2008, 106, 1943.
[6] A. B. Flynn, W. W. Ogilvie, Chem. Rev. 2007, 107, 4698.
[7] J. I. Son, C. S. Cho, H. J. Choi, Appl. Organometal. Chem. 2013, 27, 380.
[8] H. Y. Shang, R. M. Hua, Q. W. Zheng, J. L. Zhang, X. Liang, Q. M. Zhu,
Appl. Organometal. Chem. 2010, 24, 473.
[9] M. Bakherad, Appl. Organometal. Chem. 2013, 27, 125.
[10] K. Swapna, S. N. Murthy, M. T. Jyothi, Y. V. D. Nageswar, Org. Biomol.
Chem. 2011, 9, 5978.
[11] K. Okuro, M. Furuune, M. Enna, M. Miura, M. Nomura, J. Org. Chem.
1993, 58, 4716.
[12] D. Maiti, S. L. Buchwald, J. Org. Chem. 2010, 75, 1791.
[13] F. Liu, D. W. Ma, J. Org. Chem. 2007, 72, 4844.
[14] Q. Cai, B. Zou, D. W. Ma, Angew. Chem. Int. Ed. 2006, 45, 1276.
[15] A. M. Thomas, A. Sujatha, G. Anilkumar, RSC Adv. 2014, 4, 21688.
[16] H. M. Jiang, H. Fu, R. Z. Qiao, Y. Y. Jiang, Y. F. Zhao, Synthesis 2008, 15, 2417.
[17] J. C. Mao, J. Guo, S. J. Ji, J. Mol. Catal. A 2008, 284, 85.
[18] Z. J. Liu, J. P. Vors, E. R. F. Gesing, C. Bolm, Green Chem. 2011, 13, 42.
[19] K. G. Thakur, E. A. Jaseer, A. B. Naidu, G. Sekar, Tetrahedron Lett. 2009,
50, 2865.
[20] A. Correa, C. Bolm, Adv. Synth. Catal. 2007, 349, 2673.
[21] M. A. Bhosale, T. Sasaki, B. M. Bhanage, Catal. Sci. Technol. 2014, 4, 4274.
[22] J. H. Kou, A. Saha, C. Bennett-Stamper, R. S. Varma, Chem. Commun.
2012, 48, 5862.
[23] B. X. Tang, F. Wang, J. H. Li, Y. X. Xie, M. B. Zhang, J. Org. Chem. 2007, 72, 6294.
[24] M. B. Thathagar, J. Beckers, G. Rothenberg, Green Chem. 2004, 6, 215.
[25] D. Saha, T. Chatterjee, M. Mukherjee, B. C. Ranu, J. Org. Chem. 2012, 77,
9379.
[26] Z. L. Wang, L. Wang, P. H. Li, Synthesis 2008, 1367.
[27] A. Biffis, E. Scattolin, N. Ravasio, F. Zaccheria, Tetrahedron Lett. 2007, 48,
8761.
[28] J. Santandrea, A. C. Bédard, S. K. Collins, Org. Lett. 2014, 16, 3892.
[29] S. Dhara, R. Singha, M. Ghosh, A. Ahmed, Y. Nuree, A. Das, J. K. Ray, RSC
Adv. 2014, 4, 42604.
[30] C. X. Lin, J. F. Zhu, Q. S. Li, L. H. Ao, Y. J. Jin, F. B. Xu, F. Z. Hu, Y. F. Yuan,
Appl. Organometal. Chem. 2014, 28, 298.
[31] P. Rani, R. Srivastava, Tetrahedron Lett. 2014, 55, 5256.
[32] A. Sagadevan, K. C. Hwang, Adv. Synth. Catal. 2012, 354, 3421.
[33] Y. X. Xie, C. L. Deng, S. F. Pi, J. H. Li, D. L. Yin, Chin. J. Chem. 2006, 24,
1290.
Scheme 3. Coupling reaction between diiodobenzene/dibromobenzene
and phenylacetylene.
coupling reaction of phenylacetylene and 1,2-diiodobenzene or
1,3-diiodobenzene to furnish such molecules. Indeed, the coupling
reactions of aryl diiodides with phenylacetylene were carried out
using the standard Cu(OTf)2/L4 catalytic system, affording an excel-
lent yield of the diyne products, as shown in Scheme 3. Both
diiodobenzene and dibromobenzene were subject to the standard
coupling conditions, and the former seems to be more active for
the cross-coupling reaction. Notably, mono- and di-substituted
substrates are formed non-selectively by the coupling reaction of
1,3-diiodobenzene (1 equiv.) and phenylacetylene (1.5 equiv.). It is
found that increasing the amount of phenylacetylene (2.0 equiv.)
can lead to higher yield of bi-substituted product (a1, a3, a5 and a7).
The double cross-coupling reaction of 1,3-diiodobenzene (1 equiv.)
and phenylacetylene (2.0 equiv.) affords a3 with 84% yield, along
with mono-substituted product a4 in 11% yield. Therefore, we
conclude that the best results can only be obtained using the
optimal ratio of alkyne to diiodobenzene.
[34] R. D. Stephens, C. E. Castro, J. Org. Chem. 1963, 28, 2163.
[35] P. Siemsen, R. C. Livingston, F. Diederich, Angew. Chem. Int. Ed. 2000, 39, 2632.
[36] G. Eglinton, A. R. Galbraith, Chem. Ind. 1956, 737.
[37] G. Eglinton, A. R. Galbraith, J. Chem. Soc. 1959, 889.
[38] G. Eglinton, W. McCrae, Adv. Org. Chem. 1963, 4, 225.
[39] H. B. Shi, S. J. Ji, B. Bian, Dyes Pigm. 2007, 73, 394.
[40] B. Bian, S. J. Ji, B. Bian, Dyes Pigm. 2008, 76, 348.
[41] M. Y. Wu, J. C. Mao, J. Guo, S. J. Ji, Eur. J. Org. Chem. 2008, 4050.
Conclusions
A highly effective catalytic system using Cu(OTf)2 catalyst and
polycyclic aromatic hydrocarbon ligand L4 (pyrene) has been
developed for Sonogashira-type cross-coupling reactions. This novel
combination features broad reaction scope and remarkable substrate
tolerance, affording moderate to excellent yields of the desired prod-
ucts. In addition, this catalytic system is fairly affordable for both in-
dustrial and academic settings, since its cost is about one-tenth of
Supporting Information
Additional supporting information may be found in the online
version of this article at the publisher’s web-site.
wileyonlinelibrary.com/journal/aoc
Copyright © 2015 John Wiley & Sons, Ltd.
Appl. Organometal. Chem. 2015, 29, 353–356