Organic Letters
Letter
W. Neil Palmer (Princeton University) for assistance with X-ray
crystallography and mass spectrometry, respectively.
Scheme 5. Catalytic Isomerization−Hydroboration of 4-
Phenyl-1-butene Using DBPin
REFERENCES
■
(1) Vogels, C.; Westcott, S. Curr. Org. Chem. 2005, 9, 687.
(2) Magano, J.; Dunetz, J. R. Chem. Rev. 2011, 111, 2177.
(3) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
(4) (a) Leonori, D.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2015, 54,
1082. (b) Bonet, A.; Odachowski, M.; Leonori, D.; Essafi, S.; Aggarwal,
V. K. Nat. Chem. 2014, 6, 584. (c) Potter, B.; Szymaniak, A. A.; Edelstein,
E. K.; Morken, J. P. J. Am. Chem. Soc. 2014, 136, 17918. (d) Sun, C.;
Potter, B.; Morken, J. P. J. Am. Chem. Soc. 2014, 136, 6534. (e) Lee, J. C.
H.; McDonald, R.; Hall, D. G. Nat. Chem. 2011, 3, 894. (f) Crudden, C.
M.; Edwards, D. Eur. J. Org. Chem. 2003, 4695.
(5) (a) Feng, X.; Jeon, H.; Yun, J. Angew. Chem., Int. Ed. 2013, 52, 3989.
(b) Won, J.; Noh, D.; Yun, J.; Lee, J. Y. J. Phys. Chem. A 2010, 114,
12112. (c) Noh, D.; Chea, H.; Ju, J.; Yun, J. Angew. Chem., Int. Ed. 2009,
48, 6062. (d) Lee, Y.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 3160.
(6) Obligacion, J. V.; Chirik, P. J. Org. Lett. 2013, 15, 2680.
(7) Palmer, W. N.; Diao, T.; Pappas, I.; Chirik, P. J. ACS Catal. 2015, 5,
622.
(8) Obligacion, J. V.; Chirik, P. J. J. Am. Chem. Soc. 2013, 135, 19107.
(9) (a) Tseng, K.-N. T.; Kampf, J. W.; Szymczak, N. K. ACS Catal.
2015, 5, 411. (b) Zhang, L.; Zuo, Z.; Leng, X.; Huang, Z. Angew. Chem.,
Int. Ed. 2014, 53, 2696. (c) Zhang, L.; Zuo, Z.; Wan, X.; Huang, Z. J. Am.
Chem. Soc. 2014, 136, 15501. (d) Chen, J.; Xi, T.; Lu, Z. Org. Lett. 2014,
16, 6452. (e) Ruddy, A. J.; Sydora, O. L.; Small, B. L.; Stradiotto, M.;
Turculet, L. Chem.Eur. J. 2014, 20, 13918. (f) Chen, J.; Xi, T.; Ren, X.;
Cheng, B.; Guo, J.; Lu, Z. Org. Chem. Front. 2014, 1, 1306. (g) Zhang, L.;
Peng, D.; Leng, X.; Huang, Z. Angew. Chem., Int. Ed. 2013, 52, 3676.
(h) Greenhalgh, M. D.; Thomas, S. P. Chem. Commun. 2013, 49, 11230.
(i) Wu, J. Y.; Moreau, B.; Ritter, T. J. Am. Chem. Soc. 2009, 131, 12915.
(10) Zheng, J.; Sortais, J.- B.; Darcel, C. ChemCatChem 2014, 6, 763.
(11) Scheuermann, M. L.; Semproni, S. P.; Pappas, I.; Chirik, P. J. Inorg.
Chem. 2014, 53, 9463.
(12) Obligacion, J. V.; Semproni, S. P.; Chirik, P. J. J. Am. Chem. Soc.
2014, 136, 4133.
(13) Schaefer, B. A.; Margulieux, G. W.; Small, B. L.; Chirik, P. J.
Organometallics 2015, 34, 1307.
(14) Sacco, A.; Rossi, M. Chem. Commun. 1967, 316.
(15) (a) Davis, B.; Payne, N.; Ibers, J. J. Am. Chem. Soc. 1969, 91, 1240.
(b) Davis, B. R.; Payne, N. C.; Ibers, J. A. Inorg. Chem. 1969, 8, 2719.
(16) Rossi, M.; Sacco, A. J. Chem. Soc. D: Chem. Commun. 1969, 471.
(17) Yamamoto, A.; Kitazume, S.; Pu, L. S.; Ikeda, S. J. Am. Chem. Soc.
1971, 93, 371.
(18) Wei, C. S.; Davies, G. H. M.; Soltani, O.; Albrecht, J.; Gao, Q.;
Pathirana, C.; Hsiao, Y.; Tummala, S.; Eastgate, M. D. Angew. Chem., Int.
Ed. 2013, 52, 5822.
formation and β-hydride elimination are competitive. The slower
isomerization of 1-phenylbutene relative to 4-phenylbutene
likely derives from the preferential formation of η3-benzyl
intermediates following alkene insertion into the Co−H, or in
the case of boronate ester directed reactions, coordinatin of an
oxygen atom. Cobalt complexes with η3-benzyl ligands have been
observed previously,26 and similar intermediates have been
invoked to account for the selectivity for branched products in
the rhodium-catalyzed hydroboration of styrene.27 Formation of
an η3-benzyl cobalt benzyl intermediate is also consistent with
the observed catalyst effects reported in Scheme 4. More
sterically hindered ligands such as aryl-substituted α-diimine and
bis(imino)pyridines favor carbon−boron bond formation from
terminal alkyl intermediates even when the starting alkene is in
an internal position.
Additional experiments were conducted to gain insight into
the nature of the catalytic active cobalt compound and identity of
the resting state. Monitoring the catalytic hydroboration of
benzofuran with HBPin in THF-d8 with 10 mol % of
(PPh3)3CoH(N2) by 1H and 31P NMR spectroscopies revealed
no detectable change to the catalyst precursor over the
hydroboration reaction. To establish the potential role of
phosphine dissociation, the hydroboration of benzofuran was
conducted with a solution containing 0.028 M (PPh3)3CoH(N2)
in the presence of variable amounts of added PPh3. Upon
doubling the concentration of added phosphine from 0.11 to
0.22 M, the initial relative rate constants decreased by a factor of
2. The inhibition by added phosphine, in conjunction with
observation of (PPh3)3CoH(N2) as the resting state, support
PPh3 dissociation as an entry point into the catalytic cycle.
In summary, mixtures of readily available phosphine ligands
and cobalt precursors are effective for catalytic carbon−boron
bond-forming reactions. In the case of PPh3, (PPh3)3CoH(N2) is
effective for alkene hydroboration with nonterminal selectivity
offering a route to benzylic boronate esters from a variety of
alkenes or 1,1-diboron compounds from α,ω-dienes.
(19) Furukawa, T.; Tobisu, M.; Chatani, N. Chem. Commun. 2015, 51,
6508.
ASSOCIATED CONTENT
■
(20) Archer, N. J.; Haszeldine, R. N.; Parish, R. V. J. Chem. Soc., Dalton
Trans. 1979, 695.
(21) Shmidt, F. K.; Levkovskii, Y. S.; Ryutina, N. M.; Lipovich, V. G.
React. Kinet. Catal. Lett. 1979, 12, 475.
(22) Zweifel, G.; Plamondon, J. J. Org. Chem. 1970, 35, 898.
(23) Morrill, T. C.; D’Souza, C. A.; Yang, L.; Sampognaro, A. J. J. Org.
Chem. 2002, 67, 2481.
S
* Supporting Information
Complete experimental procedures, characterization data for all
new compounds, and crystallographic data in CIF format. The
Supporting Information is available free of charge on the ACS
AUTHOR INFORMATION
Corresponding Author
(24) Brennan, M. R.; Kim, D.; Fout, A. R. Chem. Sci. 2014, 5, 4831.
(25) Endo, K.; Ohkubo, T.; Hirokami, M.; Shibata, T. J. Am. Chem. Soc.
2010, 132, 11033.
■
Notes
́ ́ ́
(26) (a) Galamb, V.; Palyi, G.; Ungvary, F.; Marko, L.; Boese, R.;
Schmid, G. J. Am. Chem. Soc. 1986, 108, 3344. (b) Bleeke, J. R.; Burch, R.
R.; Coulman, C. L.; Schardt, B. C. Inorg. Chem. 1981, 20, 1316.
(27) Westcott, S. A.; Blom, H. P.; Marder, T. B.; Baker, R. T. J. Am.
Chem. Soc. 1992, 114, 8863.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the Addy Fund from the Andlinger Center for Energy
and the Environment at Princeton University and Princeton
University for financial support. We also thank Iraklis Pappas and
D
Org. Lett. XXXX, XXX, XXX−XXX