H, J4b,5 4.5, H-4b). For 9: [a]D +37.1 (c 0.8); dH([2H6]DMSO, 160 °C)
4.02–3.73 (m, 8 H), 3.69 (dd, 1 H, J 4.2, 11.3), 3.65 (dd, 1 H, J 2.2, 8.1),
1.76–1.50 (m, 4 H). For 1a: dH(CDCl3) 5.29 (br d, 1 H, J2,NH 6.5, NH),
4.30–4.24 (m, 1 H, H-2), 1.99–1.84, 1.80–1.51 (2 m, 4 H, 2 H-3, 2 H-4);
dC(CDCl3) 176.3 (CO2H), 155.8 (CO2But), 53.5 (C-2), 28.3 (CH3). For 1a
Me ester: [a]D +29.0 (c 1.0); dH([2H6]DMSO, 120 °C) 6.53 (br d, 1 H, J2,NH
7.5, NH), 4.06–3.84 (m, 5 H), 3.79–3.72 (m, 2 H), 3.65 (dd, 1 H, J9,10b 4.4,
BnO
BnO
OBn
O
BocN
O
i
8
O
O
63%
BnO
10
ii 60%
J
10a,10b 10.8, H-10b), 3.61 (s, 3 H, OMe), 1.92–1.57 (m, 4 H). For 10: [a]D
+22.4 (c 0.4); dH([2H6]DMSO, 120 °C) 4.47 (dd, 1 H, J1a,2 7.8, J1b,2 3.8,
H-2), 4.07 (dd, 1 H, J7,8 2.8, J8,9 ca. 0.5, H-8), 4.05 (dd, 1 H, J1a,1b 9.0,
H-1a), 3.81 (dd, 1 H, H-1b), 3.76 (dd, 1 H, J6,7 9.1, H-7), 3.74 (ddd, 1 H,
BnO
BnO
BnO
BnO
OBn
OBn
O
iii
NHBoc
CO2H
BocN
O
95%
J
4a,5 2.5, J4b,5 8.8, J5,6 9.2, H-5), 3.69 (ddd, 1 H, J9,10a 6.0, J9,10b 6.5, H-9),
3.57 (dd, 1 H, J10a,10b 10.0, H-10a), 3.51 (dd, 1 H, H-10b), 2.82 (dd, 1 H,
J4a,4b 16.1, H-4a), 2.63 (dd, 1 H, H-4b). [a]D Values were measured in
CHCl3 at 20 ± 2 °C; 1H and 13C NMR spectra were recorded at 300 and 75
MHz, respectively).
BnO
BnO
1b
11
Scheme 3 Reagents and conditions: i, ButLi (1.2 equiv.), Et2O, 278 to 220
°C, 2 h, then room temp., 2 h; ii, NaBH4, MeOH–Et2O, 220 °C, 1 h, then
1,1A-thiocarbonyldiimidazole (10 equiv.), DMAP (15 equiv.), THF, reflux,
6 h, then Bu3SnH (10 equiv.), AIBN (0.1 equiv.), toluene, 85 °C, 2 h; iii, 1
§ TMSOTf and Et3N were added in three portions to the cooled (-15 °C)
CH2Cl2 solution of 6 in order to avoid extensive removal of the protecting
groups.
M
Jones reagent (3 mol per mol of reactant), acetone, 0 °C to room temp.,
¶ The a- and b-D
-configuration of C-glycosides 7 and 10 was proved by 1H
3.5 h
NMR analysis of the corresponding tetra-O-acetyl derivatives (J5,6 4.7 and
9.8, respectively, in [2H6]DMSO at 120 °C).
3:7 ratio and 90% overall yield was obtained. The isolated b-C-
glycosylmethyl ketone 10 was subjected to the radical deoxy-
genation as described above for 8 to give the b-C-alkyl
glycoside2h 11 (60% isolated yield). The conversion of the
oxazolidine ring of this compound into the a-amino acid moiety
1 H. Kunz, Angew. Chem., Int. Ed. Engl., 1987, 26, 294; Pure Appl. Chem.,
1993, 65, 1223; Y. C. Lee and R. T. Lee, Acc. Chem. Res., 1995, 28, 321;
R. A. Dwek, Chem. Rev., 1996, 96, 683; G. Arsequell and G. Valencia,
Tetrahedron: Asymmetry, 1997, 8, 2839.
by treatment with the Jones reagent gave the known2b,h b-
-
D
2 (a) L. Petrus and J. N. BeMiller, Carbohydr. Res., 1992, 230, 197; (b)
C. R. Bertozzi, D. G. Cook, W. R. Kobertz, F. Gonzales-Scarano and M.
D. Bednarski, J. Am. Chem. Soc., 1992, 114, 10 639; (c) B. J. Dorgan and
R. F. W. Jackson, Synlett, 1996, 859; (d) T. F. Herpin, W. B. Motherwell
and J.-M. Weibel, Chem. Commun., 1997, 923; (e) F. Burkhart, M.
Hoffmann and H. Kessler, Angew. Chem., Int. Ed. Engl., 1997, 36, 1191;
(f) L. Lay, M. Meldal, F. Nicotra, L. Panza and G. Russo, Chem.
Commun., 1997, 1469; (g) S. D. Debenham, J. S. Debenham, M. J. Burk
and E. J. Toone, J. Am. Chem. Soc., 1997, 119, 9897; (h) A. Dondoni, A.
Marra and A. Massi, Tetrahedron, 1998, 54, 2827; (i) T. Fuchss and R. R.
Schmidt, Synthesis, 1988, 753.
3 After the submission of this paper and during the editorial processing, a
paper appeared dealing with the SmI2-promoted glycosylation of a
homoalanine equivalent. See: D. Urban, T. Skrydstrup and J.-M. Beau,
Chem. Commun., 1998, 955.
4 P. Garner and J. M. Park, J. Org. Chem., 1987, 52, 2361.
5 L. Rossi and A. Pecunioso, Tetrahedron Lett., 1994, 35, 5285.
6 R. R. Schmidt, J. Michel and M. Roos, Liebigs Ann., 1984, 1343.
7 Axial C-glycosides are usually formed by coupling electrophilic sugars
with various carbon nucleophiles; see D. E. Levy and C. Thang, The
Chemistry of C-Glycosides, Pergamon, Oxford, 1995; M. H. D. Postema,
C-Glycoside Synthesis, CRC Press, Boca Raton, 1995.
linked tetra-O-benzyl-C-galactosyl- -serine 1b (95%). The
L
synthesis of 1b highlights the use of the silyl enol ether 3 as the
homoalanine carbanion equivalent since a similar approach
cannot be developed by using amino acid equivalents2c,3
lacking the carbonyl group.
In conclusion, the synthesis of 1a and 1b demonstrates the
viability of a new approach to a- and b-linked C-glycosyl amino
acids starting from a single carbohydrate precursor. The
protected hydroxy and amino groups (as O-benzyl and N-Boc
derivatives) and, by contrast, the free carboxylic group
constitute a synthetically convenient structure for the incorpora-
tion of these C-glycosyl amino acids into a peptide chain. The
application of this method for the preparation of pairs of amino
acids by glycosylation of the silyl enol ether 3 with other sugars
is now of interest.
Notes and References
† E-mail: adn@dns.unife.it
‡ Selected data for 3: [a]D +23.4 (c 0.6); dH(C2D2Cl4, 120 °C) 4.26 (d, 1 H,
J 1.5), 4.24 (dd, 1 H, J 3.5, 7.0), 4.21 (d, 1 H, J 1.5), 4.04 (dd, 1 H, J 7.0,
8.5), 3.95 (dd, 1 H, J 3.5, 8.5), 1.63, 1.58 (2 s, 6 H), 1.46 (s, 9 H), 0.30 (s,
9 H). For 5: mp 87–88 °C (from cyclohexane); [a]D +24.2 (c 0.7);
dH(CDCl3) 4.18–4.11, 4.00–3.77 (2 m, 4 H), 1.58 (s, 3 H), 1.50 (s, 12 H),
1.18 (d, 3 H, J 6.5). For 6: [a]D +56.9 (c 2.1); dH(C2D2Cl4, 120 °C) 4.36 (dd,
1 H, J 3.1, 7.2), 4.15 (dd, 1 H, J 7.2, 9.0), 3.95 (dd, 1 H, J 3.1, 9.0), 2.20 (s,
3H), 1.70, 1.57 (2 s, 6 H), 1.51 (s, 9 H). For 8: [a]D +53.3 (c 0.9);
dH([2H6]DMSO, 120 °C) 4.09 (dd, 1 H, J1a,1b 9.0, J1a,2 7.2, H-1a), 3.86 (dd,
1 H, J1b,2 3.2, H-1b), 2.91 (dd, 1 H, J4a,4b 17.0, J4a,5 8.2, H-4a), 2.68 (dd, 1
8 D. H. R. Barton and S. W. McCombie, J. Chem. Soc., Perkin Trans. 1,
1975, 1574.
9 H. Ohrui, G. H. Jones, J. G. Moffatt, M. L. Maddox, A. T. Christensen
and S. K. Byram, J. Am. Chem. Soc., 1975, 97, 4602; P. Allevi, M.
Anastasia, P. Ciuffreda, A. Fiecchi and A. Scala, J. Chem. Soc., Perkin
Trans. 1, 1989, 1275; A. Dondoni and A. Marra, Tetrahedron Lett., 1993,
34, 7327.
Received in Liverpool, UK, 20th January 1998; 8/00571K
1742
Chem. Commun., 1998