6710
J . Org. Chem. 1998, 63, 6710-6711
Notes
(LVT) induced dehydroxylative-debenzotriazolylation
Cyclop r op ylid en e Der iva tives via
Low -Va len t Tita n iu m -In d u ced
Deh yd r oxyla tive Deben zotr ia zolyla tion of
1- a n d
which was demonstrated8 to give alkenes in good to
excellent yields and stereoselectivities. This new meth-
odology exploits the synthetic advantages of benzotria-
zole9 to both (i) stabilize R-carbanions10 and (ii) act as a
leaving group.11 The starting cyclopropylbenzotriazole
derivatives are readily available via the well-prece-
dented12 cyclopropane ring formation by 1,3-intramolecu-
lar nucleophilic substitution cyclopropane ring formation.
2-(Cyclop r op ylben zotr ia zolyl)ca r bin ols
Alan R. Katritzky,* Weihong Du, J ulian R. Levell, and
J ianqing Li
Center for Heterocyclic Compounds,
Department of Chemistry, University of Florida,
Gainesville, Florida 32611-7200
Resu lts a n d Discu ssion
The reaction of 1-bromo-3-chloropropane (1a ) with
sodium benzotriazolate (from benzotriazole and sodium
hydroxide) in DMSO gives 97% of a mixture of 1- and
2-(3-chloropropyl)benzotriazole (2a and 2b) (see Scheme
1). 1-Bromo-3-chloro-2-methylpropane (1b) similarly
yields 99% of a mixture of 1- and 2-(2-chloromethyl)-
propylbenzotriazole (2c and 2d ). The 1- and 2-benzo-
triazolyl isomers are readily separated either by column
chromatography or by acidic extractive workup (see
Experimental Section). Upon treatment at -78 °C with
n-butyllithium (n-BuLi) or lithium diisopropylamide
(LDA), and warming to 20 °C, compounds 2 (whether as
pure 1- or 2-benzotriazolyl isomers, or as a mixture)
undergo quantitative conversion to 1- and/or 2-cyclopro-
pylbenzotriazoles 5. Compounds 5 can be isolated at this
stage, and 5a was characterized by 1H and 13C NMR, but
5 are generally treated with a second equivalent of
n-BuLi/LDA at -78 °C, followed by addition of an
aldehyde/ketone 4, to give carbinols 3a -j in good yields
(as either the 1- or the 2-benzotriazolyl isomers, or as a
mixture, depending upon the nature of the starting
product 2). Cyclopropylbenzotriazole13 and derivatives14
have been previously described and could be used in place
of the in situ generated cyclopropylbenzotriazoles used
herein, thus expanding the range of potentially accessible
(cyclopropylbenzotriazolyl)carbinol intermediates.
Received April 3, 1998
Available general routes to cyclopropylidene com-
pounds include phase transfer catalyzed Wittig reaction
of cyclopropylidenetriphenylphosphorane,1 Peterson ole-
fination,2 additions of carbenes to allenes,3 and Petasis
titanocene methodology.4 While elegant, these methods
often utilize unstable and/or not-readily accessible re-
agents and intermediates. The Wittig methodology is
useful for the introduction of an unsubstituted cyclopro-
pylidene moiety, due to the commercial availability of
cyclopropyltriphenylphosphonium bromide, but other cy-
clopropylidene derivatives are more difficult to access.5
Peterson olefination requires the synthesis of thioacetal/
1-(phenylthio)trimethylsilylcyclopropane intermediates.6
The titanocene methodology succeeds in the conversion
of readily enolizable aldehydes/ketones, as well as esters
and lactones, and the parent dicyclopropyltitanocene
intermediate is easily synthesized. However, complica-
tions arise when substituted cyclopropyl derivatives are
required.
Cyclopropylidene derivatives are increasingly impor-
tant as building blocks for organic synthesis,7 and new
routes for their synthesis are relevant. We herein report
an efficient synthesis of cyclopropylidene derivatives
utilizing our recently introduced low-valent titanium
In contrast to the facile rearrangements observed for
phenylthio-derived cyclopropane carbinols,15 the inter-
mediate carbinols 3a -j do not readily rearrange and
hydrolyze to the cyclobutanone derivatives 6. However,
LVT methodology readily achieves the simultaneous loss
of both the hydroxyl and benzotriazolyl moieties. Thus,
treatment of 1- or 2-(1-cyclopropylbenzotriazolyl)carbinol
(1) Stafford, J . A.; McMurry, J . E. Tetrahedron Lett. 1988, 29, 2531.
(2) (a) Cohen, T.; J ung, S.-H.; Romberger, M. L.; McCullough, D.
W. Tetrahedron Lett. 1988, 29, 25. (b) Cohen, T.; Sherbine, J . P.; Matz,
J . R.; Hutchins, R. R.; McHenry, B. M.; Willey, P. R. J . Am. Chem.
Soc. 1984, 106, 3245.
(3) (a) Creary, X.; Mehrsheikh-Mohammadi, M. E.; McDonald, S.
J . Org. Chem. 1987, 52, 3254. (b) Billups, W. E.; Lin, L.-J .; Casserly,
E. W. J . Am. Chem. Soc. 1984, 106, 3698. (c) Staley, S. W.; Norden, T.
D. J . Am. Chem. Soc. 1984, 106, 3699.
(4) Petasis, N. A.; Bzowej, E. I. Tetrahedron Lett. 1993, 34, 943.
(5) Ollivier, J .; Piras, P. P.; Stolle, A.; Aufranc, P.; de Meijere, A.;
Salau¨n, J . Tetrahedron Lett. 1992, 33, 3307.
(6) Cohen, T.; Sherbine, J . P.; Mendelson, S. A.; Myers, M. Tetra-
hedron Lett. 1985, 26, 2965.
(7) (a) Brandi, A.; Goti, A. Chem. Rev. 1998, 98, 589. (b) Kasatkin,
A.; Sato, F. Angew. Chem., Int. Ed. Engl. 1996, 35, 2848. (c) De Meijere,
A.; Teichmann, S.; Seyed-Mahdavi, F.; Kohlstruk, S. Liebigs Ann. 1996,
1989 and references therein. (d) Nemoto, H.; Shiraki, M.; Nagamochi,
M.; Fukumoto, K. Tetrahedron Lett. 1993, 34, 4939. (e) Zefirov, N. S.;
Kozhushkov, S. I.; Ugrak, B. I.; Lukin, K. A.; Kokoreva, O. V.; Yufit,
D. S.; Struchkov, Y. T.; Zoellner, S.; Boese, R.; De Meijere, A. J . Org.
Chem. 1992, 57, 701. (f) Reissig, H.-U. In The Chemistry of the
Cyclopropyl Group; J ohn Wiley & Sons: New York, 1987; Part 1, pp
307-374. (g) Rousseau, G.; Le Perchec, P.; Conia, J . M. Tetrahedron
1978, 34, 3475. (h) Trost, B. M.; Bogdanowicz, M. J . J . Am. Chem.
Soc. 1973, 95, 5311.
(8) (a) Katritzky, A. R.; Li, J . J . Org. Chem. 1997, 62, 238. (b)
Katritzky, A. R.; Cheng D.; Li, J . J . Org. Chem. 63, 3438. (c) Katritzky,
A. R.; Cheng D.; Henderson, S. A.; Li, J . J . Org. Chem. 1998, 63, 6704.
(9) Katritzky, A. R.; Denisko, O.; Lan, X. Chem. Rev. 1998, 98, 409.
(10) Katritzky, A. R.; Yang, Z.; Cundy, D. J . Aldrichimica Acta 1994,
27, 31.
(11) Katritzky, A. R.; Rachwal, S.; Hitchings, G. J . Tetrahedron
1991, 47, 2683.
(12) Tsuji, T.; Nishida, S.; The Chemistry of the Cyclopropyl Group;
J ohn Wiley & Sons: New York, 1987; Part 1, pp 375-445.
(13) Diehl, R. E.; Kendall, R. V. US Patent 4,086,242; Chem. Abstr.
1978, 89, 109512.
(14) (a) Katritzky, A. R.; Gordeev, M. F. Synlett 1993, 213. (b)
Katritzky, A. R.; Wu, H.; Xie, L.; J iang, J . J . Heterocycl. Chem. 1995,
32, 595.
(15) Krief, A.; Laval, A.-M. Acros Acta 1995, 49.
(16) Salaun, J .; Hanack, M. J . Org. Chem. 1975, 40, 1994.
S0022-3263(98)00617-3 CCC: $15.00 © 1998 American Chemical Society
Published on Web 09/02/1998