ORGANIC
LETTERS
2007
Vol. 9, No. 19
3853-3855
N-(2-Nitrophenyl)proline: An
Intramolecular Hydrogen Bond Forming
Reagent for the Determination of the
Absolute Configuration of Primary
Amines
Hee Choon Ahn and Kihang Choi*
Department of Chemistry and Center for Electro- and Photo-ResponsiVe Molecules,
Korea UniVersity, Seoul 136-701, Republic of Korea
Received July 22, 2007
ABSTRACT
N-(2-Nitrophenyl)proline (2-NPP) amides of primary amines have a conformational preference for intramolecular hydrogen bonding. Because
of the strong and selective anisotropic effects on the amine substituents, the absolute configuration of
assigned by comparing the 1H chemical shifts of diastereomeric 2-NPP amides.
r-chiral primary amines can be
Determination of the absolute configuration of chiral mol-
ecules is a key problem in the study of natural products and
asymmetric synthesis, and one of the most convenient and
widely used methods for absolute configuration determination
is 1H NMR spectroscopy.1 In this method, the chiral substrate
is derivatized with the two enantiomers of a chiral deriva-
Here, we report that N-(2-nitrophenyl)proline (2-NPP, 3)
can be used as a new CDA for primary amines showing suffi-
ciently large ∆δRS values. Unlike MTPA and MPA, NPP
has a cyclic structure in which the aryl and carboxylic acid
groups are constrained through a five-membered ring (Figure
1). Once a primary amine is linked to the NPP carboxylic
acid group through an amide bond, a hydrogen bond is
1
tizing agent (CDA), and the H NMR spectra of the two
resulting diastereomers are compared. Interpretation of the
chemical shift difference (∆δRS ) δ(R) - δ(S)) based on
the representative conformations of the diastereomers allows
the absolute configuration of the chiral substrate to be
assigned. Several CDAs have been developed for different
classes of compounds, and for the cases of R-chiral primary
amines, Mosher’s R-methoxytrifluoromethylphenylacetic acid
(MTPA, 1)2 and Trost’s R-methoxyphenylacetic acid (MPA,
2)3 are the two most frequently used reagents. Because of
the complexity of the conformational distribution, however,
the amides derived from these reagents show small ∆δRS in
general and the development of more efficient CDAs is still
required.4
(1) Seco, J. M.; Quin˜oa´, E.; Riguera, R. Chem. ReV. 2004, 104, 17-117.
(2) (a) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512-
519. (b) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem.
Soc. 1991, 113, 4092-4096.
(3) Trost, B. M.; Belletire, J. L.; Godleski, S.; Mcdougal, P. G.; Balkovec,
J. M.; Baldwin, J. J.; Christy, M. E.; Ponticello, G. S.; Varga, S. L.; Springer,
J. P. J. Org. Chem. 1986, 51, 2370-2374.
(4) (a) Harada, K.; Shimizu, Y.; Fujii, K. Tetrahedron Lett. 1998, 39,
6245-6248. (b) Lo´pez, B.; Quin˜oa´, E.; Riguera, R. J. Am. Chem. Soc. 1999,
121, 9724-9725. (c) Seco, J. M.; Quin˜oa´, E.; Riguera, R. J. Org. Chem.
1999, 64, 4669-4675. (d) Porto, S.; Duran, J.; Seco, J. M.; Quin˜oa´, E.;
Riguera, R. Org. Lett. 2003, 5, 2979-2982. (e) Garc´ıa, R.; Seco, J. M.;
Va´zquez, S. A.; Quin˜oa´, E.; Riguera, R. J. Org. Chem. 2006, 71, 1119-
1130. (f) Takeuchi, Y.; Konishi, M.; Hori, H.; Takahashi, T.; Kometani,
T.; Kirk, K. L. Chem. Commun. 1998, 365-366. (g) Takeuchi, Y.; Segawa,
M.; Fujisawa, H.; Omata, K.; Lodwig, S. N.; Unkefer, C. J. Angew. Chem.,
Int. Ed. 2006, 45, 4617-4619.
10.1021/ol7017455 CCC: $37.00
© 2007 American Chemical Society
Published on Web 08/21/2007