1614
L. N. Pridgen
LETTER
0-10 °C, methanesulfonic acid (2 equiv) was added to this
ether formation to complete the eventual synthesis of 1a
and 1b. For a discussion of our synthesis efforts towards
1a and 1b using 4a and a methyl ester derivative see ref-
erences 4 and 6.
slurry. A reddish-brown two phase suspension resulted which
was allowed to warm to ambient temperature and stir 1 hr. The
reaction mixture was transferred to a separatory funnel and a
heavy reddish-brown oil separated from the organic layer and
was removed. Enough NaHCO3 (5% aqueous solution) was
slowly added to the separatory funnel to adjust the pH of the
toluene solution to within the 7-8 range. The aqueous layer
was then discarded. The organic layer was washed with water
(2 x 50 mL) and brine (30 mL) then was concentrated under
vacuum to yield 4.4 g (88%) of 4a and 5a as a 85 / 15 mixture
of diastereoisomers. The glassy amorphous solid was
dissolved in warm methanol (~50 °C) but yielded on cooling
the solid, single diastereoisomer 4a: mp 136–138 °C; [a]+
42.3 ° (c 1.0, CHCl3); IR (KBr) n = 1785, 1722, 1697, 1485,
1335 cm–1; d 1H NMR (300 MHz, CDCl3) d = 1.03 (t, 3 H, J
= 7.5 Hz), 1.8 (m, 2 H), 3.95 (t, 2 H, J = 6.5 Hz), 4.25 (dd, 1
H, J = 8.8, 5.4 Hz), 4.71 (1 H, t, J = 9.1 Hz), 4.98 (1 H, d, J =
5.2 Hz), 5.4 (bs, 1 H), 5.45 ( dd, 1 H, J = 9.0, 5.5 Hz), 5.9 (s,
2 H), 6.6 – 6.75 (m, 3 H), 7.1 – 7.5 (m, 8 H); 13C NMR (75
MHz, CDCl3) d = 10.43, 22.4, 45.7, 56.2, 58.4, 64.2, 69.9,
70.0, 72.5, 101.1, 105.7, 108.2, 108.4, 121.5, 125.2, 125.9,
127.1, 128.6, 128.9, 135.4, 135.7, 138.3, 146.9, 148.1, 148.2,
153.4, 159.4, 167.0, 196.9; MS (m/z ) 500 (M–H)+, 378, 337,
215, 173, 164. Anal. Calcd. for C29H25NO7: C, 69.73; H, 5.04;
N 2.80. Found: C, 70.00; H, 4.75; N, 2.83.
Acknowledgement
The authors are indepted to Mr. M. Olsen and P. Cummings for
mass spectra data; Ms. P. Offen for NMR data; and Mr. G. Zuber
for FT/IR.
References and Notes
(1) Elliot, J. D; Lago, M. A.; Cousins, R. D.; Gao, A.; Leber, J. D.
Erhard, K. F.; Nambi, P.; Elshoursbagy, N. A.; Kumar, C.;
Lee, J. A.; Bean, J. W.; DeBrosse, C. W.; Eggleston, D.S.;
Brooks, D. P.; Feurerstein, G.; Ruffolo, R. R. Jr.; Weinstock,
J.; Gleason, J.G.; Peishoff, C. E.; Ohlstein, E.H.; J. Med.
Chem. 1994, 37, 1553.
(2) Mills, R. J.; Ping, L.-J.; Kowalski, C. J. manuscript to be
submitted.
(3) Wood, J. L.; Mellinger, M.; Su, Q. manuscript to be submitted.
(4) Clark, W. C.; Tickner–Eldridge, A. M.; Huang, G. K.;
Pridgen, L. N.; Olsen, M. A.; Mills, R. J.; Lantos, I.; Baine, N.
H. J. Am. Chem. Soc. 1998, 120, 4550. See also reference 6.
(5) McGuire, M. A.; Shilcrat, S. C.; Sorenson, E. Tetrahedron
Lett. 1999, 40, 3293.
(6) Pridgen, L. N.; Huang, G. K. Tetrahedron Lett. 1998, 39,
8421.
(7) A chiral auxiliary of opposite configuration may be
substituted to obtain the enantiomer of 4a.
(8) Habermas, K. L; Denmark, S. E. Jones, S. E. in Organic
Reactions Vol. 45 Paquette, L. A. Ed.; John Wiley & Sons:
New York, 1994, Vol. 45, p 1.
(9) (a) Denmark, S. E. in Comprehensive Organic Synthesis;
Trost, B. M.; Fleming, I. Eds.; Pergamon Press: Oxford, 1991,
Vol. 5, p 751. (b) Ramaiah, M. Synthesis 1983, 429. (c)
Bender, J. A; Blize, A. E.; Browder, C. C.; Giese, S.; West, F.
G J. Org. Chem. 1998, 63, 2430.
(10) For relevant achiral examples of Nazarov cyclizations see:
(a) Bergmann, J.; Venemalm, L. Tetrahedron Lett. 1987, 28,
3741. (b) Sartori, G.; Bigi, F.; Maggi, R.; Luca, G.; Bernardi,
G. L. Tetrahedron Lett. 1993, 34, 7339. (c) Ichikawa, J.;
Fujiwara, T.; Okauchi, T.; Minami, T. Synlett 1998, 927.
(d) Kajioka, T.; Oda, M.; Yamada, S.; Kawamori, Y.;
Miyatake, R.; Kuroda, S. Synthesis 1999, 184.
(11) (a) Tietze, L. F.; Schünke, C. Angew. Chem. Int. Ed., Engl.
1995, 34 , 1731. (b) Tietze, L. F.; Schünke, C. Eur. J. Org.
Chem. 1998, 10, 2089.
(13) Crystal data for 3a: [X1] C29H25NO7, M=499.50, monoclinic,
space group P21, a=13.992(3), b=6.0210(10), c=15.310(3) Å,
β =108.38(3), V=1224.0(4) Å3, Z=2, ρcalcd=1.355Mg/m3,
F(000) = 524, T=223(2)K, µ(MoKα)=0.805cm-1,crystal
dimensions 0.50 x 0.18 x 0.04mm3. Enraf-Nonius CAD4
diffractometer, graphite monochromator, λ=1.54178Å, scan
range 6° < 2θ < 125°. Of 2296 measured reflections, 2157 were
independent (Rint = 0.04) and 2059 had I > 2σ (I). The
structure was solved by direct methods using SHELXS-90 and
refined with all data (336 parameters) by full-matrix least
squares of F2 using SHELXL-93 (G. M. Sheldrick, Gottingen,
1993). All non-hydrogen atoms were refined anisotropically
and hydrogen atoms were included in idealized positions with
a riding model. Final R values are R1 = 0.046 (I > 2σ (I)) and
wR2 = 0.134 (all data). Crystallographic data (excluding
structure factors) for the structures reported in this paper have
been deposited with the Cambridge Crystallographic Data
Centre as supplementary publication nos. CCDC-102250.
Copies of the data can be obtained free of charge on
application to CCDC, 12 Union Road, Cambridge CB21EZ,
UK (fax: int. code + (44)1223 336-033; e-mail:
deposit@ccdc.cam.ac.uk).
Article Identifier:
1437-2096,E;1999,0,10,1612,1614,ftx,en;S03699ST.pdf
(12) General procedure for compound 4a. With stirring and
cooling to 0–10 °C, solid 3a (5 g, 0.01 mol) was added to a
flask containing 50 mL of toluene. Over a 10 minute period, at
Synlett 1999, No. 10, 1612–1614 ISSN 0936-5214 © Thieme Stuttgart · New York