i-Motif in the bcl-2 P1 Promoter
A R T I C L E S
Recently it has been demonstrated that G- and C-rich sequences
are capable of rearranging from B-DNA conformations into non-
B-DNA secondary structures (G-quadruplexes and i-motifs)
under negative superhelicity.24 G-rich sequences can give rise
to G-quadruplexes, which are secondary DNA structures
composed of stacked G-tetrads formed by the Hoogsteen
interaction of four guanines stabilized by the presence of a
monovalent cation (Figure 1B).27 Similarly, the complementary
C-rich strand may fold back on itself to form an i-motif structure
comprising two parallel duplexes with intercalated hemiproto-
nated cytosine+-cytosine base pairs (Figure 1C).28-30 Both
secondary structure-forming sequences require adjacent guanine
or cytosine tracts separated by one or more bases. These dynamic
GC-rich sequences have been discovered within or near numerous
promoter regions throughout the human genome, suggesting that
thesestructuresmayfunctionintheregulationofgenetranscription.31-37
Genomic analyses on the prevalence of G-quadruplex-forming
sequences within 1 kb upstream of transcriptional start sites have
revealed that 43% of promoter regions contain these G-rich
elements.32 One such G-rich sequence was identified within the
c-myc promoter and has been shown to adopt intramolecular
parallel G-quadruplex structures.38-42 In support of the hypothesis
that DNA secondary structures serve as modulators of transcrip-
tion, the c-myc G-quadruplex has been demonstrated to function
as a transcriptional repressor in vitro.41 TMPyP4, an established
G-quadruplex-interactive compound,41,43 and more recently
discovered quindoline derivatives44 and actinomycin D45 bind
to and stabilize the c-myc G-quadruplexes, resulting in the
downregulation of c-myc mRNA levels in RAMOS Burkitt’s
lymphoma41,43,45 and Hep G2 hepatocellular carcinoma44 cell
lines. In further support of secondary structure involvement in
gene transcription, protein-facilitated unwinding or folding of
the c-myc G-quadruplex as observed with NM23-H224,46 and
nucleolin,47 respectively, resulted in activation or repression of
c-myc transcription. Subsequent investigations of G-rich ele-
ments within other oncogene promoter regions has led to the
discovery of G-quadruplex-forming sequences upstream of the
VEGF,48,49 c-kit,50-53 PDGF-A,54 RET,55 KRAS,56 hif-1R,57
bcl-2,15-18 and hTERT58 promoters and downstream of the
c-myb59 and Rb60 promoters.
While previous research has focused principally on the
characterization of G-quadruplex structures, more recent studies
have been expanded to also include characterization of i-motif
structures within a variety of promoter regions, such as
c-myc,61-63 Rb,60 RET,56 VEGF,49 and EPM1.64 Of interest, the
bcl-2 C-rich promoter sequence contains six runs of at least
three contiguous cytosines that may serve as the core building
block for i-motif formation. Recent experimental data with the
bcl-2 C-rich promoter sequence utilizing only the middle four
runs of cytosines has illustrated the ability of this sequence to
form two intramolecular i-motif structures.19 These bcl-2 i-motif
structures were not only present at low pH but persisted at pH
6.1, and approximately 5% of the oligomer remained at pH 7.19
This supports the possibility that i-motif structures may form
opposite to the G-quadruplex in vivo and may also play an
important role in the transcriptional process.
(20) Benham, C. J. Annu. ReV. Biophys. Biophys. Chem. 1985, 14, 23.
(21) Lee, J. S.; Ahsley, C.; Hample, K. J.; Bradley, R.; Scraba, D. G. J.
Mol. Biol. 1995, 252, 283.
Since the bcl-2 promoter region consists of six cytosine runs,
our studies utilized the full-length sequence rather than the
previously studied truncated sequence of four cytosine runs19
(22) Kouzine, F.; Levens, D. Front. Biosci. 2007, 12, 4409.
(23) Kouzine, F.; Sandrod, S.; Elisha-Feil, Z.; Levens, D. Nat. Struct. Mol.
Biol. 2008, 15, 146.
(24) Sun, D.; Hurley, L. H. J. Med. Chem. 2009, 52, 2863.
(25) Halder, K.; Chowdhury, S. Nucleic Acids Res. 2005, 33, 4466.
(26) Simonsson, T.; Pribylova, M.; Vorlickova, M. Biochem. Biophys. Res.
Commun. 2000, 278, 158.
(46) Dexheimer, T. S.; Carey, S. S.; Zuohe, S.; Gokhale, V. M.; Hu, X.;
Murata, L. B.; Maes, E. M.; Weichsel, A.; Sun, D.; Meuillet, E. J.;
Montfort, W. R.; Hurley, L. H. Mol. Cancer Ther. 2009, 8, 1363.
(47) Gonza´lez, V.; Guo, K.; Hurley, L. H.; Sun, D. J. Biol. Chem. 2009,
284, 23622.
(27) Williamson, J. R.; Raghuraman, M. K.; Cech, T. R. Cell 1989, 59,
871.
(48) Sun, D.; Guo, K.; Rusche, J. J.; Hurley, L. H. Nucleic Acids Res.
2005, 33, 6070.
(28) Gueron, M.; Leroy, J. L. Curr. Opin. Struct. Biol. 2000, 10, 326.
(29) Leroy, J. L.; Gehring, K.; Kettani, A.; Gueron, M. Biochemistry 1993,
32, 6019.
(49) Guo, K.; Gokhale, V.; Hurley, L. H.; Sun, D. Nucleic Acids Res. 2008,
36, 4598.
(30) Chen, L.; Cai, L.; Zhang, X.; Rich, A. Biochemistry 1994, 33, 13540.
(31) Huppert, J. L.; Balasubramanian, S. Nucleic Acids Res. 2005, 33, 2908.
(32) Huppert, J. L.; Balasubramanian, S. Nucleic Acids Res. 2007, 35, 406.
(33) Huppert, J. L.; Bugaut, A.; Kumar, S.; Balasubramanian, S. Nucleic
Acids Res. 2008, 36, 6260.
(50) Rankin, S.; Reszka, A. P.; Huppert, J.; Zloh, M.; Parkinson, G. N.;
Todd, A. K.; Ladame, S.; Balasubramanian, S.; Neidle, S. J. Am. Chem.
Soc. 2005, 127, 10584.
(51) Fernando, H.; Reszka, A. P.; Huppert, J.; Ladame, S.; Rankin, S.;
Venkitaraman, A. R.; Neidle, S.; Balasubramanian, S. Biochemistry
2006, 45, 7854.
(34) Huppert, J. L. Biochimie 2008, 90, 1140.
(35) Yadav, V. K.; Abraham, J. K.; Mani, P.; Kulshrestha, R.; Chowdhury,
S. Nucleic Acids Res. 2008, 36, D381.
(52) Phan, A. T.; Kuryavyi, V.; Burge, S.; Neidle, S.; Patel, D. J. J. Am.
Chem. Soc. 2007, 129, 4386.
(36) Mani, P.; Yadav, V. K.; Das, S. K.; Chowdhury, S. PLoS ONE 2009,
4, e4399.
(53) Shirude, P. S.; Okumus, B.; Ying, L.; Ha, T.; Balasubramanian, S.
J. Am. Chem. Soc. 2007, 129, 7484.
(37) Verma, A.; Halder, K.; Halder, R.; Yadav, V. K.; Rawal, P.; Thakur,
R. K.; Mohd, F.; Sharma, A.; Chowdhury, S. J. Med. Chem. 2008,
51, 5641.
(54) Qin, Y.; Rezler, E. M.; Gokhale, V.; Sun, D.; Hurley, L. H. Nucleic
Acids Res. 2007, 25, 7698.
(55) Guo, K.; Pourpak, A.; Beetz-Rogers, K.; Gokhale, V.; Sun, D.; Hurley,
L. H. J. Am. Chem. Soc. 2007, 129, 10220.
(38) Phan, A. T.; Modi, Y. S.; Patel, D. J. J. Am. Chem. Soc. 2004, 126,
8710.
(56) Cogoi, S.; Xodo, L. E. Nucleic Acids Res. 2006, 34, 2536.
(57) De Armond, R.; Wood, S.; Sun, D.; Hurley, L. H.; Ebbinghaus, S. W.
Biochemistry 2005, 44, 16341.
(39) Seenisamy, J.; Rezler, E. M.; Powell, T. J.; Tye, D.; Gokhale, V.;
Joshi, C. S.; Siddiqui-Jain, A.; Hurley, L. H. J. Am. Chem. Soc. 2004,
126, 8702.
(58) Palumbo, S. L.; Ebbinghaus, S. W.; Hurley, L. H. J. Am. Chem. Soc.
2009, 131, 10878.
(40) Ambrus, A.; Chen, D.; Dai, J.; Jones, R. A.; Yang, D. Biochemistry
2005, 44, 2048.
(59) Palumbo, S.; Memmott, R. M.; Uribe, D. J.; Krotova-Khan, Y.; Hurley,
L. H.; Ebbinghaus, S. W. Nucleic Acids Res. 2008, 36, 1755.
(60) Xu, Y.; Sugiyama, H. Nucleic Acids Res. 2006, 34, 949.
(61) Mathur, V.; Verma, A.; Maiti, S.; Chowdhury, S. Biochem. Biophys.
Res. Commun. 2004, 320, 1220.
(41) Siddiqui-Jain, A.; Grand, C. L.; Bearss, D. J.; Hurley, L. H. Proc.
Natl. Acad. Sci. U.S.A. 2002, 99, 11593.
(42) Yang, D.; Hurley, L. H. Nucleosides, Nucleotides, Nucleic Acids 2006,
25, 951.
(43) Hurley, L. H.; Von Hoff, D. D.; Siddiqui-Jain, A.; Yang, D. Semin.
Oncol. 2006, 33, 498.
(62) Cashman, D. J.; Buscaglia, R.; Freyer, M. W.; Dettler, J.; Hurley,
L. H.; Lewis, E. A. J. Mol. Model. 2008, 14, 93.
(63) Simonsson, T.; Pribylova, M.; Vorlickova, M. Biochem. Biophys. Res.
Commun. 2000, 278, 158.
(44) Ou, T. M.; Lu, Y. J.; Zhang, C.; Huang, Z. S.; Wang, J. H.; Tan,
J. H.; Chen, Y.; Ma, D. L.; Wong, K. Y.; Tang, J. C.; Chan, A. S.;
Gu, L. Q. J. Med. Chem. 2007, 50, 1465.
(64) Pataskar, S. S.; Dash, D.; Brahmachari, S. K. J. Biomol. Struct. Dyn.
2001, 19, 307.
(45) Kang, H. J.; Park, H. J. Biochemistry 2009, 48, 7392.
9
J. AM. CHEM. SOC. VOL. 131, NO. 48, 2009 17669