K. Grubmayr and M. Stanek
FULL PAPER
with aqueous NaHCO3 (0.2m, 60 mL), and dried over Na2SO4. After
evaporation of the solvent the residue was subjected to column chroma-
tography (silica gel, CH2Cl2/MeOH 15/1) separating 2 from its diaster-
eomers. Fractions containing 2 were treated with aqueous HCl (0.1n,
50 mL) and H2O (3 Â 100 mL). The ratio of 2 and 2Æ was near 1:2 at room
temperature. Rf (silica gel, CH2Cl2/MeOH 10/1): 0.4; 1H NMR (500 MHz,
CDCl3; d corresponds to the top of the broad averaged signals of 2 and 2Æ at
273 K): d 7.30 (5H; H-C-Ph), 7.23 (1H; H-C10), 5.89 (2H; H-C15, H-N-
Cys)), 5.69 (1H; H-C5), 5.07 (2H; H2-C-Bzl), 4.41 (1H; H-aC-Cys), 3.66,
3.65 (6H; 2 Â CH3-O), 3.55 (2H; H-C3', H(1)-bC-Cys), 3.10 ± 2.80 (7H; H2-
C8', H2-C12', H(2)-bC-Cys, H-C3, H-C2), 2.55 (4H; H2-C8'', H2-C12''), 2.32
(2H; H2-C18'), 2.13, 2.04, 2.02 (9H; H3-C17', H3-C13', H3-C7'), 1.43 (3H;
H3-C3''), 1.30 (3H; H3-C2'), 1.07 (3H; H3-C18''); (H,H)-ROESY NMR
(500 MHz, CDCl3, 299 K): 2' $ 3, 2 $ 3'', 3 $ (5, 3''), 3' $ (5, aC-Cys), 5 $
(7', aC-Cys), 7' $ (8', 8''), 10 $ (8', 12'), 13' $ 12', 15 $ (13', 17'), 2,6-Ph $
CH2-Bzl; IR (CHCl3): nÄ 3294, 2973, 2954, 2934, 2875, 1732, 1690, 1630,
1602 cm 1; UV/Vis (CHCl3, 298 K): lmax (e) 638 (24100), 350 (24800), 330
(25400), 277 nm (12300); lip [2/2Æ] (e) 581 (15800), 432 (2500), 376
(18700), 333 (24500), 318 nm (19500); CD (CHCl3, 298 K): lmax (De) 623
(38), 349 ( 56), 273 nm (19); C46H55N5O10S; MS (ESIp): m/z (%) 914
3H; H3-C18'), 1.33 (s, 6H; 2H3-C3'), tosylate: 7.54 (d, 3J 8 Hz, 2H; H-
C2,C6), 7.05 (d, 3J 8 Hz, 2H; H-C3,C5), 2.29 (s, 3H; H3-C4); (H,H)-
ROESY NMR (500 MHz, CDCl3, 280 K): 2 $ 3', 5 $ (7', 3'), 10 $ (8', 12'),
15 $ (13'), 17' $ 18'; UV/Vis (CHCl3): lmax (e) 610 (34000), 353 (23400),
304 nm (12900).
Acknowledgments: This work was supported by the Fonds zur Förderung
der wissenschaftlichen Forschung in Austria (FWF-Project P-9166-CHE).
We thank Dr. G. Niessner and Dipl.-Ing. W. Ahrer for mass spectral
measurements. K.G. thanks Prof. W. Wehrmeyer for drawing his attention
to ref. [17].
Received: January 14, 1998 [F963]
[1] a) R. Huber, Angew. Chem. 1989, 101, 849 ± 871; Angew. Chem. Int.
Ed. Engl. 1989, 28, 848 ± 870; b) A. N. Glazer, J. Biol. Chem. 1989,
264, 1 ± 4.
[2] a) W. Rüdiger, F. Thümmler, Angew. Chem. 1991, 103, 1242 ± 1254;
Angew. Chem. Int. Ed. Engl. 1991, 30, 1216-1228; b) K. Schaffner,
S. E. Braslavsky, A. R. Holzwarth in Advances in Photochemistry,
Vol. 15 (Eds.: D. H. Volman, G. S. Hammond, K. Gollnick), Wiley,
New York, 1990, pp. 229 ± 277; c) W. Rüdiger, Photochem. Photobiol.
1992, 56, 803 ± 809; d) K. Schaffner, S. E. Braslavsky, A. R. Holz-
warth, in Frontiers in Supramolecular Chemistry and Photochemistry
(Eds.: H.-J. Schneider, H. Dürr), VCH, Weinheim, 1991, pp. 412 ± 452;
e) V. A. Sineshchekov, Biochim. Biophys. Acta 1995, 1228, 125 ± 164;
f) W. Gärtner, Biol. Unserer Zeit 1997, 27, 235 ± 244.
[3] The term 2,3-dihydrobilindione is generally used to characterize the
basic structure of linear tetrapyrroles covalently bound to photoactive
proteins of cyanobacteria, algae or plants. According to the recom-
mendations of IUPAC the system is termed 2,3-dihydro-23H-bilin-
1,19(21H,24H)-dione.
[4] a) S. Schneider, P. Geiselhart, F. Baumann, S. Siebzehnrübl, R.
Fischer, H. Scheer, in Photosynthetic Light-Harvesting Systems (Eds.:
S. Schneider, H. Scheer), Walter de Gruyter, Berlin, 1988, pp. 469 ±
482; b) S. Berns, R. MacColl, Chem. Rev. 1989, 89, 807 ± 825; c) C.
Scharnagl, S. Schneider, J. Photochem. Photobiol. B. Biol. 1991, 8,
129 ± 157; d) T. Gillbro, A. V. Sharkov, I. V. Kryukov, E. V. Khor-
oshilov, R. Fischer, H Scheer, Biochim. Biophys. Acta 1993, 1140,
321 ± 326; e) M. P. Debreczeny, K. Sauer, J. Zhou, D. A. Bryant, J.
Phys. Chem. 1995, 99, 8412 ± 8419; f) M. P. Debreczeny, K. Sauer, J.
Zhou, D. A. Bryant, J. Phys. Chem. 1995, 99, 8420 ± 8431.
[5] P. H. Quail, M. T. Boylan, B. M. Parks, T. W. Short, Y. Xu, D. Wagner,
Science 1995, 268, 675 ± 680.
(22) [M H2Na] , 892 (100) [MNa] , 870 (15) [MH] .
Synthesis of 3 and 4: A solution of (Z)-9-formyl-2,3,7,8-tetramethyldipyr-
rin-1(10H)-one[22] (60 mg, 235 mmol) in MeOH (200 mL) was irradiated
with a high-pressure mercury immersion lamp (Hanau, TQ 150 ± 1725)
under an argon atmosphere for 2 h in a Pyrex well. After evaporation of the
solvent under reduced pressure the residue was added at once to a stirred
solution of (Z)-2,3-dihydro-9-tert-butyloxycarbonyl-3,3,7,8-tetramethyldi-
pyrrin-1(10H)-one[23] (72 mg, 235 mmol) in TFA (5 mL). After stirring for
90 min at room temperature MeOH (15 mL) was added. The reaction
mixture was diluted with CH2Cl2 (200 mL), washed with H2O (3 Â 150 mL),
with aqueous NaHCO3 (0.5m, 100 mL), and dried over Na2SO4. After
evaporation of the solvent the residue was subjected to column chroma-
tography (silica gel, CH2Cl2/MeOH 30/1) separating 3 (80 mg, 61%)
from 4 (25 mg, 19%).
(4Z,9Z,15Z)-2,3-Dihydro-3,3,7,8,12,13,17,18-octamethyl-23H-bilin-1,19(21-
H,24H)-dione (3): M.p. 2448C; Rf (silica gel, CH2Cl2/MeOH 30/1): 0.5;
1H NMR (500 MHz, CDCl3): d 6.60 (s, 1H; H-C10), 6.01 (s, 1H; H-C15),
5.45 (s, 1H; H-C5), 2.35 (s, 2H; H2-C2), 2.18 (s, 3H; H3-C12'), 2.13 (s, 3H;
H3-C8'), 2.11 (s, 3H; H3-C17'), 2.09 (s, 3H; H3-C13'), 1.99 (s, 3H; H3-C7'),
1.84 (s, 3H; H3-C18'), 1.42 (s, 6H; 2 Â H3-C3'); (H,H)-ROESY NMR
(500 MHz, CDCl3): 2 $ 3', 5 $ (7', 3'), 10 $ (8', 12'), 15 $ (13', 17'), 17' $
18'; IR (CHCl3): nÄ 3430, 3006, 2921, 2862, 1738, 1716, 1688, 1635,
1596 cm 1; UV/Vis (CHCl3): lmax (e) 584 (14100), 347 (32500), 275 nm
(17400); C27H32N4O2; MS (70 eV; EI): m/z (%) 444 (100) [M] .
[6] M. Duerring, G. B. Schmidt, R. Huber, J. Mol. Biol. 1991, 217, 577 ±
592.
[7] M. Betz, Biol. Chem. 1997, 378, 167 ± 176.
[8] K. Brejc, R. Ficner, R. Huber, S. Steinbacher, J. Mol. Biol. 1995, 249,
424 ± 440.
(4Z,9Z,15E)-2,3-Dihydro-3,3,7,8,12,13,17,18-octamethyl-23H-bilin-1,19(21-
H,24H)-dione (4): M.p. 2428C; Rf (silica gel, CH2Cl2/MeOH 30/1): 0.3;
1H NMR (500 MHz, CDCl3): d 7.56 (s, 1H; H-N24), 6.58 (s, 1H; H-C10),
6.23 (s, 1H; H-C15), 5.38 (s, 1H; H-C5), 2.33 (s, 2H; H2-C2), 2.15 (s, 3H;
H3-C12'), 2.12 (s, 3H; H3-C8'), 2.01 (s, 3H; H3-C17'), 1.98 (s, 3H; H3-C13'),
1.97 (s, 3H; H3-C7'), 1.86 (s, 3H; H3-C18'), 1.35 (s, 6H; 2 Â H3-C3'); (H,H)-
ROESY NMR (500 MHz, CDCl3): 2 $ 3', 5 $ (7', 3'), 10 $ (8', 12'), 15 $
(13', 24), 17' $ 18'; UV/Vis (CHCl3): lmax (e) 546 (15100), 350 (22500),
[9] M. Duerring, R. Huber, W. Bode, J. Mol. Biol. 1990, 211, 633 ± 644.
[10] a) R. Ficner, R. Huber, Eur. J. Biochem. 1993, 218, 103 ± 106; b) R.
Ficner, K. Lobeck, G. Schmidt, R. Huber, J. Mol. Biol. 1992, 228, 935 ±
950; c) W. R. Chang, T. Jiang, Z. L. Wan, J. P. Zhang, Z. X. Yang,
D. C. Liang, J. Mol. Biol. 1996, 262, 721 ± 731.
[11] a) J. C. Lagarias, D. M. Lagarias, Proc. Natl. Acad. Sci. USA 1989, 86,
5778 ± 5780; b) L. Deforce, K.-I. Tomizawa, N. Ito, D. Farrens, P.-S.
Song, Proc. Natl. Acad. Sci. USA 1991, 88, 10392 ± 10396; c) T.
Kunkel, K. I. Tomizawa, R. Kern, M. Furuya, N.-H. Chua, E. Schäfer,
Eur. J. Biochem. 1993, 215, 587 ± 594; d) L. Li, J. C. Lagarias, Proc.
Natl. Acad. Sci. USA 1994, 91, 12535 ± 12538; e) C. Hill, W. Gärtner, P.
Towner, S. E. Braslavsky, K. Schaffner, Eur. J. Biochem. 1994, 223,
69 ± 77; f) J. Hughes, T. Lamparter, F. Mittmann, E. Hartmann, W.
Gärtner, A. Wilde, T. Börner, Nature 1997, 386, 663.
[12] a) G. Struckmeier, J. Engel, U. Thewalt, Z. Naturforsch. 1978, 33b,
753 ± 755; b) A. Korkin, F. Mark, K. Schaffner, L. Gorb, J. Leszczyn-
ski, J. Mol. Struct. (Theochem) 1996, 388, 121 ± 137.
[13] a) D. Krois, Monatsh. Chem. 1991, 122, 495 ± 506; b) Y. Mizutani, S.
Tokutomi, K. Aoyagi, K. Horitsu, T. Kitagawa, Biochemistry 1991, 30,
10693 ± 10700.
276 nm (14500); C27H32N4O2; MS (70 eV; EI): m/z (%) 444 (100) [M] .
Hydrotosylates of 3 and 4: Hydrotosylates were prepared in solution by
adding stoichiometric quantities of p-TsOH dissolved in CDCl3 or CHCl3
to the corresponding solutions of 3 and 4.
3 ´ H OTs : 1H NMR (500 MHz, CDCl3, 278 K): d 11.73, 11.46, 10.66,
9.92 (4 Â s, 4H; 4 Â H-N), 7.02 (s, 1H; H-C10), 6.03 (s, 1H; H-C15), 5.40 (s,
1H; H-C5), 2.31 (s, 3H; H3-C8'), 2.28 (s, 3H; H3-C12'), 2.27 (s, 2H; H2-C2),
2.08 (s, 3H; H3-C13'), 2.05 (s, 3H; H3-C7'), 1.91 (s, 3H; H3-C17'), 1.60 (s,
3H; H3-C18'), 1.27 (s, 6H; 2 Â H3-C3'), tosylate: 7.75 (d, 3J 8 Hz, 2H; H-
C2,C6), 6.97 (d, 3J 8 Hz, 2H; H-C3,C5), 2.26 (s, 3H; H3-C4'); (H,H)-
ROESY NMR (500 MHz, CDCl3, 298 K): 2 $ 3', 5 $ (7', 3'), 10 $ (8', 12'),
15 $ (13', 17'), 17' $ 18'; IR (CHCl3): nÄ 3440, 3006, 2921, 1710, 1688, 1633,
1600 cm 1; UV/Vis (CHCl3): lmax (e) 624 (36900), 352 (28100), 277 nm
(11500).
4 ´ H OTs : 1H NMR (500 MHz, CDCl3, 275 K): d 11.65, 11.51, 10.41,
9.45 (4 Â s, 4H; 4 Â H-N), 7.02 (s, 1H; H-C10), 6.42 (s, 1H; H-C15), 5.47 (s,
1H; H-C5), 2.43 (s, 2H; H2-C2), 2.30 (s, 3H; H3-C8'), 2.25 (s, 3H; H3-C12'),
2.06 (s, 3H; H3-C7'), 1.94 (s, 3H; H3-C13'), 1.81 (s, 3H; H3-C17'), 1.78 (s,
[14] a) U. Zrunek, H. Falk, Monatsh. Chem. 1983, 114, 983 ± 998; b) U.
Zrunek, P. Wolschan, H. Falk, Monatsh. Chem. 1984, 115, 243 ± 249;
1658
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1998
0947-6539/98/0409-1658 $ 17.50+.50/0
Chem. Eur. J. 1998, 4, No. 9