Hibbs et al.: Fragmentation of N-Phenyl Benzenesulfonamides
1287
11. Wang, Z., Hop, C.E.C.A., Kim, M.-S., Huskey, S.-E.W., Baillie, T.A.,
Guan, Z.: The unanticipated loss of SO2 from sulfonamides in collision-
induced dissociation. Rapid Commun. Mass Spectrom. 17, 81–86 (2003)
12. Hu, N., Liu, P., Jiang, K., Zhou, Y., Pan, Y.: Mechanism study of SO2
elimination from sulfonamides by negative electrospray ionization mass
spectrometry. Rapid Commun. Mass Spectrom. 22, 2715–2722 (2008)
13. Sun, M., Dai, W., Liu, D.Q.: Fragmentation of aromatic sulfonamides in
electrospray ionization mass spectrometry: elimination of SO2 via
rearrangement. J. Mass Spectrom. 43, 383–393 (2007)
14. Xiang, Z.: Mechanism of SO2 elimination from the aromatic sulfonamide
anions: a theoretical study. Comp. Theor. Chem. 991, 74–81 (2012)
15. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A.,
Cheeseman, J.R., Montgomery Jr., J.A., Vreven, T., Kudin, K.N., Burant,
J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B.,
Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M.,
Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T.,
Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian,
H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R.,
Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C.,
Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P.,
Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain,
M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman,
J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J.,
Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin,
R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A.,
Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W.,
Gonzalez, C., Pople, J.A.: Gaussian 03, Revision C.02. Gaussian, Inc,
Wallingford (2004)
Conclusions
N-phenyl benzenesulfonamide anions were shown to exhibit
several fragmentation channels beyond sulfur dioxide elim-
ination. The anion derived from the initial SO2 loss, then
eliminates either a H2 molecule to form a carbazolide
derivative, or a benzyne to generate an anilide anion. The
ion generated by the benzyne elimination then loses a SO2
molecule while transferring the hydrogen atom, which was
attached to the ortho position of the precursor ion, to the
nitrogen atom of the anilide anion. Lastly, the homolytic
cleavage that fragments the S–C bond of anions of N-phenyl
benzenesulfonamide and its derivatives is in violation of the
so-called “even-electron rule.”
Acknowledgments
The authors thank Jason Bialecki for the assistance provided
with preparative TLC work. They are grateful to Bristol-
Myers Squibb Pharmaceutical Company (New Brunswick,
NJ, USA) for the donation of the Waters Quattro Ultima
mass spectrometer.
16. Becke, A.D.: Density‐functional thermochemistry. III. The role of exact
exchange. J. Chem. Phys. 98, 5648–5652 (1993)
17. Lee, C., Yang, W., Parr, R.G.: Development of the Colle-Salvetti
correlation energy formula into a functional of the electron density.
Phys. Rev. B 37, 785–789 (1988)
18. Foresman, J.B., Frisch, A.E.: Exploring Chemistry with Electronic
Structure Methods, 2nd edn, p. 64. Gaussian Inc, Pittsburgh (1996)
19. Görner, H.: Photoinduced oxygen uptake of diphenylamines in solution
and their ring closure revisited. J. Phys. Chem. A 112, 1245–1250
(2008)
20. Encinas, S., Bosca, F., Miranda, M.A.: Photochemistry of 2,6-
dichlorodiphenylamine and 1-chlorocarbazole, the photoactive chromo-
phores of diclofenac, meclofenamic acid, and their major photoprod-
ucts. Photochem. Photobiol. 68, 640–645 (1998)
References
1. Anand, N.: Sulfonamides and Sulfones. In: Wolff, M.E. (ed.) Burger’s
Medicinal Chemistry, 4th edn, pp. 1–40. Wiley, Chichester (1979)
2. Kang, J.G., Hur, J.H., Choi, S.J., Choi, G.J., Cho, K.Y., Ten, L.N., Park,
K.H., Kang, K.Y.: Antifungal activities of N-arylbenzenesulfonamides
against phytopathogens and control efficacy on wheat leaf rust and
cabbage club root diseases. Biosci. Biotechnol. Biochem. 66, 2677–
2682 (2002)
3. Li, J.J., Wang, H., Tino, J.A., Robl, J.A., Herpin, T.F., Lawrence, R.M.,
Biller, S., Jamil, H., Ponticiello, R., Chen, L., Chu, C.-H., Flynn, N.,
Cheng, D., Zhao, R., Chen, B., Schnur, D., Obermeier, M.T., Sasseville,
V., Padmanabha, R., Pike, K., Harrity, T.: 2-Hydroxy-N-
arylbenzenesulfonamides as ATP-citrate lyase inhibitors. Bioorg. Med.
Chem. Lett. 17, 3208–3211 (2007)
4. Saíz-Urra, L., González, M.P., Collado, I.G., Hemández-Galán, R.:
Quantitative structure–activity relationship studies for the prediction of
antifungal activity of N-arylbenzenesulfonamides against Botrytis
cinerea. J. Mol. Graph. Model. 25, 680–690 (2007)
5. Stowe, C.M.: The sulfonamides. In: Jones, L.M. (ed.) Veterinary
Pharmacology and Therapeutics, pp. 438–502. Iowa State University
Press, Ames (1965)
6. Badoil, L., Benanou, D.: Characterization of volatile and semivolatile
compounds in waste landfill leachates using stir bar sorptive extraction-
GC/MS. Anal. Bioanal. Chem. 393, 1043–1054 (2009)
7. Code of Federal Regulations. Title 21: Food and Drugs. CFR 558.15 (2011)
8. Zhao, L., Stevens, J.: Determination of sulfonamide antibiotics in
bovine liver using agilent bond elut QuEChERS EN kits by LC/MS/
MS. Agilent Technologies (2012)
9. Pleasance, S., Blay, P., Quilliam, M.A., O'Hara, G.: Determination of
sulfonamides by liquid chromatography, ultraviolet diode array detec-
tion, and ion-spray tandem mass spectrometry with application to
cultured salmon flesh. J. Chromatogr. 558, 155–173 (1991)
10. Fuh, M.R., Chan, S.A.: Quantitative determination of sulfonamide in
meat by liquid chromatography-electrospray-mass spectrometry.
Talanta 55, 1127–1139 (2001)
21. Karni, M., Mandelbaum, A.: The ‘even-electron rule’. J. Mass
Spectrom. 15, 53–64 (1980)
22. Chai, Y., Sun, H., Pan, Y., Sun, C.: N-centered odd-electron ions
formation from collision-induced dissociation of electrospray ionization
generated even-electron ions: single electron transfer via ion/neutral
complex in the fragmentation of protonated N,N′-dibenzylpiperazines
and protonated N-benzylpiperazines. J. Am. Soc. Mass Spectrom. 22,
1526–1533 (2011)
23. Cai, Y., Mo, Z., Rannulu, N.S., Guan, B., Kannupal, S., Gibb, B.C., Cole,
R.B.: Characterization of an exception to the ‘even-electron rule’ upon low-
energy collision induced decomposition in negative ion electrospray
tandem mass spectrometry. J. Mass Spectrom. 45, 235–240 (2010)
24. Attygalle, A.B., García-Rubio, S., Ta, J., Meinwald, J.: Collisionally-
induced dissociation mass spectra of organic sulfate anions. J. Chem.
Soc., Perkin Trans 2, 498–506 (2001)
25. Yunfeng, C., Shifeng, G., Yuanjiang, P.: A mechanistic study of
formation of radical anion from fragmentation of deprotonated N,2-
diphenylacetamide derivatives in electrospray ionization tandem mass
spectrometry. Acta Chim. Sinica 70, 1805–1811 (2012)
26. Hu, N., Tu, Y.P., Jiang, K., Pan, Y.: Intramolecular charge transfer in
the gas phase: fragmentation of protonated sulfonamides in mass
spectrometry. J. Org. Chem. 75, 4244–4250 (2010)
27. Crews, P., Rodriguez, J., Jaspers, M.: Organic Structure Analysis, p.
246. Oxford University Press, New York (1998)
28. Hansch, C., Leo, A., Taft, R.W.: A survey of Hammett substituent
constants and resonance and field parameters. Chem. Rev. 91, 165–
195 (1991)