Retention of Inhibitory Potency of ACE Inhibitors
J. Am. Chem. Soc., Vol. 120, No. 44, 1998 11365
Cavel et al.10 have established the combination of phosphine
and iminophosphorane, produced by a selective oxidation of
one of the diphosphines, as versatile chelating agents to several
transition metals including Rh(I). The recent studies11 on the
extension of the coordination chemistry of iminophosphoranes
to the diagnostically useful transition metal 99mTc and their
stability in aqueous medium indicates that these conjugates are
potential in vivo tracking agents, provided they are conjugated
to a pharmacophore of interest. Since 99mTc has a short half-
life12 (6.5 h), we have used Rh- and Pd-based BFCAs for the
present studies. 105Rh has a low abundance of γ-rays (Eγ )
306 keV, 5%, 319 keV, 19%) which would allow in vivo
tracking of drugs13 at specific biological sites. However, the
major requirements for radiometalated ACE inhibitors to be
diagnostic agents include (a) the establishment of the coordina-
tion chemistry of Rh(III) including the geometrical configuration
of the chelate ring with respect to the binding sites of lisinopril
and (b) the confirmation of the retention of the inhibitory
potency of ACE inhibitors, functionalized by relatively bulky
and electron-rich metalated chelating agents. In our earlier
studies, we have shown that functionalization of lisinopril at
the primary and secondary amine groups by tetrafluoroaryl
azides has improved their binding potency, assessed by auto-
radiography studies,14 competitive radioligand binding assays,14
molecular dynamics calculations,15 and IC50 measurements using
amydolytic assays.15 Since attachment of perfluoroaryl azides
to lisinopril shows promising inhibitory potency, further func-
tionalization of azides by phosphines provides a needed lisi-
nopril-BFCA conjugate ready to incorporate transition metals
and analogous radiometals. Selective oxidation of one of the
phosphines of diphosphines provides asymmetrically substituted
(iminophosphorano)phosphine combination which is expected
to improve the stability of the complex through bidentate
coordination to metal.16,17
Our interest here is to identify the best site on lisinopril for
further functionalization and to test the effect of metalated
chelating frameworks at different sites of lisinopril (primary
amine group, secondary amine group, carboxylic groups, etc.)
on the inhibitory potency of lisinopril conjugates in the post
modification. Although Rh(III) complexes with phosphines are
known16,17 and Rh(I)-(iminophosphorano)phosphine complexes
are quite common,18 surprisingly, Rh(III)-(iminophosphorano)-
phosphines are uncommon. Since 105Rh is available in a
virtually “no carrier added” version as Rh(III)Cl3‚xH2O, the
ultimate success of the ACE-inhibitor avid radiopharmaceutical
as an in vivo tracking agent depends on the precise structural
determination of the nonradioactive Rh(III) complex in solid
form and its conformation in solution. Hence, as a part of the
ongoing research on BFCAs19 and bifunctional photolabile
chelating agents (BFPCAs),20 we wish to elucidate the X-ray
structural investigations on representative Rh(III) and Pd(II)
perfluoroaryl functionalized (iminophosphorano)phosphines,
supplemented by multinuclear and 2D NMR of functionalized
lisinopril derivatives. We also would like to establish the
retention of the inhibitory potency at nM level for primary amine
functionalized Rh(III) and Pd(II) conjugates, in contrast to
functionalization at carboxylic groups with a Cu complex which
resulted in the significant loss of activity. These findings
constitute a first report on the biological activity of lisinopril,
tailored by metalated chelating agents.
(7) (a) Bohacek, R.; Lombaert, S. D. McMartin, C.; Priestle, J.; Grutter,
M. J. Am. Chem. Soc. 1996, 118, 8231. (b) Wyvratt, M. J.; Patchette, A.
A. Med. Res. ReV. 1985, 5, 483. (c) Opie, L. H. Angiotensin ConVerting
Enzyme Inhibitors; Wiley-Liss: New York, 1992. (d) Squire, I. B.; Lees,
K. R. ReV. Contemp. Pharmacother. 1994, 4, 45. (e) Lawton, G.; Pacioreck,
P. M.; Waterfall, J. F. The design and biological profile of ACE inhibitors.
In AdVances in Drug Research; Jovanovich, H. B., Ed.; Academic Press:
New York, 1992; Vol. 23, pp 161-220.
(8) (a) Edwards, C. R. W.; Padfield, P. L. Lancet 1985, 30. (b) Johnston,
C. I. Med. J. Aust. 1988, 148, 488. (c) Patchett, A. A. Enalapril and
Lisinopril. In Chronicles of Drug DiscoVery; Lednicer, D., Ed.; ACS
Professional Reference Book, American Chemical Society: Washington,
DC, 1993; Vol. 3, pp 125-162. (d) Goa, K. L.; Balfour, J. A.; Zuanetti, G.
Drugs 1996, 52, 564.
(9) (a) Mendelsohn, F. A. O. Clin. Exp. Pharmacol. Physiol. 1984, 11,
431. (b) Reid, J. L. J. CardioVasc. Pharmacol. 1993, 22 (suppl), s 41.
(10) (a) Reed, R. W.; Santarsiero, B.; Cavell, R. G. Inorg. Chem. 1996,
35, 4292. (b) Li, J.; McDonald, R.; Cavell R. G. Organometallics 1996,
15, 1033. (c) Balakrishna, M. S.; Klein, R.; Uhlenbrock, S.; Pinkerton, A.;
Cavell R. G. Inorg. Chem. 1993, 32, 5676. (d) Li, J.; Pinkerton, A. A.;
Finnen, D. C.; Kumar, M.; Martin, A.; Weisemann, F.; Cavel, R. G. Inorg.
Chem. 1996, 35, 5684.
Experimental Section
All synthetic procedures were conducted in a dry nitrogen atmosphere
using standard Schlenk tube techniques and prepurified solvents.
Reactions involving the synthesis of azides were carried out in a
subdued light by wrapping the flasks with aluminum foil. Nuclear
magnetic resonance spectra were recorded in CDCl3 on a Bruker WH-
300 spectrometer, and chemical shifts are reported in ppm downfield
1
from SiMe4 for H NMR. The 31P NMR chemical shifts are reported
with respect to 85% H3PO4 as an external standard, and positive shifts
lie downfield from the standard. 19F NMR chemical shifts are reported
(11) (a) Katti, K. V. Singh, P. R. Katti, K. K.; Barnes, C. L.; Kopica,
K.; Ketring, A. R.; Volkert, W. A. Phosphorus, Sulfur Silicon Relat. Elem.
1993, 55. (b) Jurisson S.; Eble, E.; Berning, D.; Barnes, C. L.; Katti, K. V.
Phosphine Complexes of Technetium (VII). In Chemistry and Nuclear
Medicine; Nicolini, M., Bandole, G.. Mazzi, U., Eds.; SGE: Padova, 1995;
pp 201-203. (c) Katti, K. V.; Singh, P. R.; Katti, K. K. Kopica, K.; Volkert,
W. A.; Ketring, A. R. J. Labelled Compd. Radiopharm. 1993, 22, 407.
(12) Volkert, W. A.; Jurisson, S. Technetium-99m chelates as radio-
pharmaceuticals. In Technetium and Rhenium their chemistry and it’s
applications; Topics in Current Chemistry; Ed. by Yoshihara. K., Omori,
T., Eds.; Springer Verlag: Berlin, Heidelberg, 1996; Chapter 4, pp 123-
148. (b) Volkert, W. A. Ligand systems useful in designing high specific
activity 99mTc or 186Re, 188Re radiopharmaceuticals. In Technetium and
Rhenium in Chemistry and nuclear Medicine, 4th ed.; Nicolini, M., Mazzi,
U., Eds.; Cortina International: Verona, Italy, 1995; pp 239-242. (c)
Jurisson, S.; Berning, D.; Jia, W.; Ma, D. Chem. ReV. 1993, 93, 1137. (e)
Meares, C. F. Nucl. Med. Biol. 1986, 13, 311. (e) Schwochau, K. Angew.
Chem., Int. Ed. Engl. 1994, 33, 2258.
(16) (a) Jardine, F. H.; Sheridan, P. S. In ComprehensiVe Coordination
Chemistry; Eds. Wilkinson, G., Gillard, R. D., McCleverty, J. A., Eds.;
Pergamon: Oxford, 1987; Vol. 4, Chapter 48.
(17) Mayer, H. A.; Kaska, W. C. Chem. ReV. 1994, 94, 1239.
(18) (a) Bader, A.; Lindner, E. Cord. Chem. ReV. 1991, 108, 27. (b)
Katti, K. V.; Cavell, R. G. Comm. Inorg. Chem. 1990, 10, 53. (c) Katti, K.
V.; Cavell, R. G. Organometallics 1988, 7, 2236. (d) Katti, K.V; Cavell,
R. G. Inorg. Chem. 1989, 28, 413. (e) Katti, K.V.; Cavell, R. G. Inorg.
Chem. 1989, 28, 3033. (f) Katti, K. V.; Cavell, R. G. Organometallics 1989,
8, 2147. (g) Katti, K. V.; Batchelor, R. J.; Einstein, F. W. B.; Cavell, R. G.
Inorg.Chem. 1989, 29, 808. (h) Liu, C. Y.; Chen, D. Y.; Cheng, M. C.;
Peng, S. M.; Liu, S. T. Organometallics 1995, 14, 1983. (i) Weight A.;
Bischoff, S. Phosphorus, Sulfur Silicon Relat. Elem. 1995, 102, 91. (j) Katti,
K. V.; Santarseiro, B. D.; Pinkerton, A. A.; Cavell R. G. Inorg. Chem.
1993, 32, 5919. (k) Law, D. J.; Bigam, G.; Cavel R. G. Can. J. Chem. ReV.
Can. De Chimie. 1995, 73, 635.
(19) (a) Pandurangi, R. S.; Karra, S. R.; Kuntz, R. R.; Volkert, W. A.
Photochem. Photobiol. 1997, 65, 101. (b) Pandurangi, R. S.; Kuntz, R. R.;
Volkert, W. A.; Barnes, C. L.; Katti, K. V. J. Chem. Soc., Dalton Trans.,
1995, 565. (c) Pandurangi, R. S.; Karra, S. R.; Kuntz, R. R.; Volkert, W.
A. Bioconjugate Chem. 1995, 6, 630. (d) Pandurangi, R. S.; Kuntz, R. R.;
Volkert, W. A. Appl. Radiat. Isot. 1995, 46, 233. (e) Pandurangi, R. S.;
Karra, S. R.; Katti, K. V.; Volkert, W. A.; Kuntz, R. R. J. Org. Chem.
1997, 62, 2587. (f) Pandurangi, R. S.; Karra, S. R.; Kuntz, R. R.; Volkert,
W. A. Photochem. Photobiol. 1996, 64, 100. (g) Pandurangi, R. S.; Katti,
K. V.; Volkert, W. A.; Kuntz, R. R. Inorganic Chemistry 1996, 35, 3716.
(13) Ehrhardt, G.J; Ketring, A. R.; Volkert, W. A. A production of
isotopes at nuclear reactors. In Synthesis and Applications of Isotopically
Labeled Compounds; Buncel, E., Kabalka, G. W., Eds.; Elsevier Science:
The Netherlands, 1991; pp 159-164. (b) Goswami, N.; Alberto, R.; Barnes,
C. L.; Jurisson, S. Inorg. Chem. 1996, 35, 7546.
(14) Pandurangi, R. S.; Kuntz, R. R.; Sun, Y.; Weber K. T. Bioorg. Chem.
1997, 57, 75.
(15) Pandurangi, R. S.; Rao, S. N.; Stillwell, L; Barnes, C. L.; Kuntz R.
R. J. Am. Chem. Soc., submitted.