October 1998
SYNLETT
1151
T. J. Am. Chem. Soc. 1993, 115, 7898. Uyehara, T.; Yuuki, M.;
Masaki, H.; Matsumoto, M.; Ueno, M.; Sato, T. Chem. Lett. 1995,
789. Schinzer, D.; Panke, G. J. Org. Chem. 1996, 61, 4496.
Tanino, K.; Yoshitani, N.; Moriyama, F.; Kuwajima, I. J. Org.
Chem. 1997, 62, 4206.
(6) a) Akiyama, T.; Ishikawa, K.; Ozaki, S. Chem. Lett. 1994, 627. b)
Akiyama, T.; Yasusa, T.; Ishikawa, K.; Ozaki, S. Tetrahedron Lett.
1994, 35, 8401. c) Akiyama, T.; Kirino, M. Chem. Lett. 1995, 723.
d) Akiyama, T.; Yamanaka, M. Synlett 1996, 1095.
Scheme 2
(7) Boivin, T. L. B. Tetrahedron 1987, 43, 3309. J.-C. Harmange and
B. Figadére, Tetrahedron: Asymmetry, 1993, 4, 1711.
(8) Larock, R. C.; Leong, W. W. In Comprehensive Organic
Synthesis; Trost, B. M.; Fleming, I. Eds.; Pergamon Press:
Oxford, 1991; Vol. 4; p 269. Harding, K. E.; Tiner, T. H. In
Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I. Eds.;
Pergamon Press: Oxford, 1991; Vol. 4; p 363.
(9) Miura, K.; Okajima, S.; Honda, T.; Hosomi, A. Tetrahedron Lett.
1995, 36, 1483. Miura, K.; Hondo, T.; Okajima, S.; Hosomi, A.
Tetrahedron Lett. 1996, 37, 487. Miura, K.; Hondo, T.; Saito, H.;
Ito, H.; Hosomi, A. J. Org. Chem. 1997, 62, 8292.
Scheme 3
In summary, hydroxy-substituted tetrahydrofurans were prepared highly
stereoselectively by the silicon-directed cyclization of allylsilanes
bearing a hydroxy group.
(10) Panek, J. S.; Garbaccio, R. M.; Jain, N. F. Tetrahedron Lett. 1994,
35, 6453.
(11) Akiyama, T.; Nakano, M.; Kanatani, J.; Ozaki, S. Chem. Lett.
1997, 385.
References and Notes
(12) Requisite allylsilanes were readily prepared by the reaction of α-
silyl allyl anion and oxiranes (Scheme 4). A representative result
(1) Wierschke, S. G.; Chandrasekhar, J.; Jorgensen, W. L. J. Am.
Chem. Soc. 1985, 107, 1496. Lambert, J. B. Tetrahedron 1990, 46,
2677. Lambert, J. B.; Emblidge, R. W.; Malany, S. J. Am. Chem.
Soc. 1993, 115, 1317.
is shown below for the preparation of , thereby γ-adduct was
1a
readily separated by silica gel column chromatography.
(2) Fleming, I.; Dunogues, J.; Smithers, R. Org. React. (N.Y.) 1989,
37, 57. Fleming, I. In Comprehensive Organic Synthesis; Trost, B.
M.; Fleming, I. Eds.; Pergamon Press: Oxford, 1991; Vol. 2; p
563. Fleming, I.; Barbero, A.; Walter, D. Chem. Rev. 1997, 97,
2063.
(3) For reviews: Panek, J. S. In Comprehensive Organic Synthesis;
Trost, B. M.; Fleming, I. Eds.; Pergamon Press: Oxford, 1991;
Vol. 1; p 579. Masse, C. E.; Panek, J. S. Chem. Rev. 1995, 95,
1293. Knölker, H.-J. J. Prakt. Chem. 1997, 339, 304.
Scheme 4
(4) a) Knölker, H.-J.; Jones, P. G.; Pannek, J.-B. Synlett 1990, 429. b)
Danheiser, R. L.; Dixon, B. R.; Gleason, R. W. J. Org. Chem.
1992, 57, 6094. c) Danheiser, R. L.; Takahashi, T.; Bertok, B.;
Dixon, B. R. Tetrahedron Lett. 1993, 34, 3845. d) Knölker, H.-J.;
Foitzik, N.; Goesmann, H.; Graf, R. Angew. Chem., Int. Ed. Engl.
1993, 32, 1081. e) Knölker, H.-J.; Graf, R. Tetrahedron Lett. 1993,
34, 4765. f) Panek, J. S.; Jain, N. F. J. Org. Chem. 1993, 58, 2345.
g) Hojo, M.; Tomita, K.; Hirohara, Y.; Hosomi, A. Tetrahedron
Lett. 1993, 34, 8123. h) Monti, H.; Audran, G.; Léandri, G.;
Monti, J.-P. Tetrahedron Lett. 1994, 35, 3073. i) Yamazaki, S.;
Tanaka, M.; Yamaguchi, A.; Yamabe, S. J. Am. Chem. Soc. 1994,
116, 2356. j) Knölker, H.-J.; Graf, R. Synlett 1994, 131. k)
Brengel, G. P.; Rithner, C.; Meyers, A. I. J. Org. Chem. 1994, 59,
5144. l) Knölker, H.-J.; Foitzik, N.; Goesmann, H.; Graf, R.;
Jones, P. G.; Wanzl, G. Chem. Eur. J. 1997, 3, 538. m) Murphy, W.
S.; Neville, D. Tetrahedron Lett. 1997, 38, 7933. n) Monti, H.;
Rizzotto, D.; Léandri, G. Tetrahedron 1998, 54, 6725. o) Knölker,
H.-J.; Jones, P. G.; Wanzl, G. Synlett 1998, 613. p) Akiyama, T.;
Hoshi, E.; Fujiyoshi, S. J. Chem. Soc., Perkin Trans. 1 1998, 2121.
1
(13) Data for selected compounds follow:
:
H NMR (400 MHz,
3a
CDCl ) δ =7.51-7.48 (m, 2H), 7.37-7.34 (m, 3H), 3.91 (dq, 1H, J=
10.6, 6.0 Hz), 1.82 (dd, 1H, J= 12.3, 7.8 Hz), 1.65 (dd, 1H, J=
12.8, 12.3 Hz), 1.39 (ddd, 1H, J= 12.8, 10.6, 7.8 Hz), 1.19 (s, 3H),
1.18 (s, 3H), 1.13 (d, 3H, J=6.0 Hz), 0.32 (s, 3H), 0.31 (s, 3H).
C NMR (100 MHz, CDCl ) δ = 137.72 (C), 133.75 (CH),
3
13
3
129.12 (CH), 127.81 (CH), 79.45 (C), 77.18 (CH), 43.26 (CH ),
34.90 (CH), 29.40 (CH ), 28.81 (CH ), 22.32 (CH ), 4.20 (CH ),
2
3
3
3
3
4.12 (CH ).
3
1
: H NMR (400 MHz, CDCl ) δ = 7.45-7.42 (m, 2H), 7.31-7.27
(m, 3H), 3.83-3.71 (m, 2H), 3.59 (ddd, 1H, J= 8.1, 8.0, 4.0 Hz),
1.96 (dddd, 1H, J= 12.0, 8.8, 6.8, 4.0 Hz), 1.71 (dddd, 1H, J=
12.0, 11.2, 8.1, 8.1 Hz), 1.07 (d, 3H, J= 6.0 Hz), 1.06-1.01 (m,
1H), 0.26 (s, 3H), 0.25 (s, 3H). C NMR (100 MHz, CDCl ) δ =
3d
3
13
3
137.55 (C), 133.75 (CH), 129.15 (CH), 127.81 (CH), 77.73 (CH),
67.18 (CH ), 33.91 (CH), 30.16 (CH ), 21.69 (CH ), 4.28 (CH ),
2
2
3
3
4.16 (CH ).
3
1
: H NMR (400 MHz, CDCl ) δ = 3.95 (ddd, 1H, J= 7.3, 6.0, 5.9
6
3
(5) Sugimura, H. Tetrahedron Lett. 1990, 31, 5909. Panek, J. S.;
Yang, M. J. Am. Chem. Soc. 1991, 113, 9868. Panek, J. S.;
Beresis, R. J. Org. Chem. 1993, 58, 809. Panek, J. S.; Beresis, R.
Hz), 3.85 (dq, 1H, J= 6.0, 6.0 Hz), 2.12 (dd, 1H, J= 12.8, 7.3 Hz),
1.76 (dd, 1H, J= 12.8, 5.9 Hz), 1.68 (brs, 1H), 1.35 (s, 3H), 1.27
13
(s, 3H), 1.26 (d, 3H, J= 6.0 Hz). C NMR (100 MHz, CDCl ) δ =
3