M. Nakayama, Synth. Commun., 1997, 27, 2371; (c) L. E. Martinez,
Palladium-catalyzed coupling of bicyclic allylic carbonate
(Ϫ)-3a with 2-amino-6-chloropurine [Pd(PPh3)4, DMSO–THF]
in the absence of base provided a separable mixture of N9–N7
coupling products in 53 and 24% yields respectively.19 Coup-
ling of carbonate (Ϫ)-3b under the same conditions furnished
coupling product (Ϫ)-7b in 69% yield. In this case, we were not
able to identify the N7 coupling product regioisomer.
Direct hydrolysis of the 2-chloro-4-aminopurine adduct
(Ϫ)-7a20 provided (Ϫ)-carbovir (1a) in 89% yield. Similarly,
hydrolysis of adduct (Ϫ)-7b provided homocarbovir 1b in 90%
yield.21 Treatment of the 2-chloro-4-aminopurine adduct
(Ϫ)-7a with cyclopropylamine in refluxing ethanol provided
(Ϫ)-1592U89 (2a) in 72% yield, and similarly the six-membered
ring analogue 2b was obtained in 69% yield.21 The dextro-
rotatory carbonucleosides 1a–b and 2a–b were obtained when
the acetyl esters (ϩ)-5a–b were used as starting material and the
same methodology was followed.
In summary, we have presented a simple preparation of
either racemic or enantiomerically pure cyclic carbonates 3a–b.
Short syntheses of both enantiomers of carbonucleosides car-
bovir and 1592U89 were achieved by palladium coupling of the
cyclic allylic carbonate prepared from enzymatically resolved
hydroxylactones. This enantiodivergent methodology was suc-
cessfully extended to the syntheses of optically pure six-
membered ring analogues 2a–b.
W. A. Nugent and E. N. Jacobsen, J. Org. Chem., 1996, 61, 7963;
(d) B. M. Trost, R. Madsen, S. G. Guile and A. E. H. Elia, Angew.
Chem., Int. Ed. Engl., 1996, 35, 1569; (e) M. T. Crimmins and B. W.
King, J. Org. Chem., 1996, 61, 4192; ( f ) M. Tanaka, Y. Norimine,
T. Fujita, H. Suemune and K. Sakai, J. Org. Chem., 1996, 61, 6952;
(g) T. Berranger and Y. Langlois, Tetrahedron Lett., 1995, 36, 5523;
(h) B. M. Trost, M. G. Organ and G. A. O’Doherty, J. Am. Chem.
Soc., 1995, 117, 9662.
3 For syntheses of 1592U89: see S. M. Daluge, U.S. Patent, 5 034 394,
1991; also ref. 2e.
4 (a) R. Vince, M. Hua, J. Brownell, S. Daluge, F. Lee, W. M. Shannon,
G. C. Lavelle, J. Qualls, O. S. Weislow, R. Kiser, P. G. Canonico,
R. H. Schultz, V. L. Narayanan, J. G. Mayo, R. H. Shomaker and
M. R. Boyd, Biochem. Biophys. Res. Commun., 1988, 156, 1046;
(b) R. Vince and M. Hua, J. Med. Chem., 1990, 33, 17.
5 (a) S. M. Daluge, S. S. Good, M. B. Faletto, W. H. Miller, M. H.
St. Clair, L. R. Boone, M. Tisdale, N. R. Parry, J. E. Reardon, R. E.
Dornsife, D. R. Averett and T. A. Krenitsky, Antimicrob. Agents
Chemother., 1997, 41, 1082; (b) S. S. Good, S. M. Daluge, S. V.
Ching, K. M. Ayers, W. B. Mahoney, M. B. Faletto, B. A. Domin,
B. S. Owens, R. E. Dornsife, J. A. McDowell, S. W. LaFon and
W. T. Symonds, Antiviral Res., 1995, 26, A229.
6 M. B. Faletto, W. H. Miller, E. P. Garvey, M. H. St. Clair and
S. M. Daluge, Antimicrob. Agents Chemother., 1997, 41, 1099.
7 (a) M. J. Konkel and R. Vince, Tetrahedron, 1996, 52, 799; (b) M. J.
Konkel and R. Vince, Nucleosides and Nucleotides, 1995, 14, 2061.
8 (a) B. M. Trost, G.-H. Kuo and T. Benneche, J. Am. Chem. Soc.,
1988, 110, 621; (b) L.-L. Gundersen, T. Benneche and K. Undheim,
Tetrahedron Lett., 1992, 33, 1085.
9 (a) B. M. Trost and T. R. Verhoeven, in Comprehensive Organo-
metallic Chemistry, ed., G. Wilkinson, Pergamon Press, Oxford,
1982; vol. 8, ch. 57; (b) B. M. Trost and D. L. Van Vranken, Chem.
Rev., 1996, 96, 395.
10 R. A. MacKeith, R. McCague, H. F. Olivo, C. F. Palmer and S. M.
Roberts, J. Chem. Soc., Perkin Trans. 1, 1993, 313.
[4-(2Ј-Amino-6Ј-chloropurin-9Ј-yl)cyclohex-2-en-1-yl]methanol
7b
To a solution of carbonate 3b (0.110 g, 0.714 mmol) in a 1:1
mixture of dimethylsulfoxide–tetrahydrofuran (4 cm3) was
added Pd(PPh3)4 (0.042 g, 0.036 mmol) and 2-amino-6-
chloropurine (0.121 g, 0.714 mmol). The solution was stirred at
60 ЊC for 8 h. The solution was cooled to room temperature,
poured into water (10 cm3) and extracted with ethyl acetate
(3 × 10 cm3). The combined organic layers were washed with
brine (15 cm3), dried over MgSO4, filtered and the solvent evap-
orated under reduced pressure. Purification of the residue by
silica gel column chromatography (dichloromethane–methanol,
19:1) furnished the title compound (137 mg, 69% yield) as a
white solid.
11 A. Lubineau, J. Augé and N. Lubin, Tetrahedron Lett., 1991, 32,
7529.
12 P. A. Grieco, K. J. Henry, J. J. Nunes and J. E. Matt Jr., J. Chem.
Soc., Chem. Commun., 1992, 368.
13 (a) A. J. Carnell, G. Casy, G. Gorins, A. Kompany-Saeid,
R. McCague, H. F. Olivo, S. M. Roberts and A. J. Willetts, J. Chem.
Soc., Perkin Trans. 1, 1994, 3431; (b) G. Casy, G. Gorins,
R. McCague, H. F. Olivo and S. M. Roberts, J. Chem. Soc., Chem.
Commun., 1994, 1085.
14 (a) V. K. Aggarwal and N. Monteiro, J. Chem. Soc., Perkin Trans. 1,
1997, 2531; (b) F. Burlina, A. Favre, J.-L. Fourrey and M. Thomas,
Bioorg. Med. Chem. Lett., 1997, 7, 247; (c) V. K. Aggarwal,
N. Monteiro, G. J. Tarver and S. D. Lindell, J. Org. Chem., 1996, 61,
1192.
15 (a) R. McCague, H. F. Olivo and S. M. Roberts, Tetrahedron Lett.,
1993, 34, 3785; (b) S. M. Roberts, H. F. Olivo and R. McCague,
Patent Appl. WO 94 07 888.
16 R. A. MacKeith, R. McCague, H. F. Olivo, S. M. Roberts, S. J. C.
Taylor and H. Xiong, Bioorg. Med. Chem., 1994, 2, 387.
17 D. E. Hibbs, M. B. Hursthouse, L. J. S. Knutsen, K. M. Abdul
Malik, H. F. Olivo, S. M. Roberts, D. R. Varley and H. Xiong, Acta
Chem. Scand., 1995, 49, 122.
18 S. Hildbrand, T. Troxler and R. Scheffold, Helv. Chim. Acta, 1994,
77, 1236.
Rf 0.35 (10% MeOH in CHCl3); mp 167–169 ЊC; [α]25 Ϫ53.1
2
(c 0.2, CH3OH); δH(360 MHz; [H6]DMSO) 7.99 (1H, s), 6.92
(2H, s), 6.12 (1H, d, J 10),‡ 5.85 (1H, d, J 10), 4.97 (1H, m), 4.70
(1H, t, J 5.4), 3.46 (2H, m), 2.26 (1H, m), 1.92 (2H, m), 1.65
(1H, m) and 1.42 (1H, m); δC(90 MHz; [2H6]DMSO) 159.7 (C),
153.5 (C), 149.4 (C), 141.7 (CH), 135.9 (CH), 124.5 (CH), 123.7
(C), 63.9 (CH2), 48.5 (CH), 37.7 (CH), 26.8 (CH2) and 20.4
(CH2); νmax/cmϪ1 3420, 3316, 3202, 1617, 1562, 1507, 1466, 1402
and 1363; m/z (FAB) 280 (M ϩ Hϩ, 46%), 170 (36), 91 (100),
73 (38) (Found: M ϩ Hϩ, 280.0969. C12H15N5OCl requires
M ϩ Hϩ, 280.0965).
19 Crimmins reported similar ratio of regioisomeric coupling products,
see ref. 2e.
‡ J Values are given in Hz.
20 R. Vince and M. Hua, U.S. Patent 4 931 559, 1990. Compound 7a
was also employed by Daluge, see ref. 3.
21 Carbovirref. 11 (1a): [α]D Ϫ62 (c 0.4, MeOH); 1592U89ref. 2e (2a): [α]D
Ϫ31.8 (c 0.51, MeOH); homocarbovir (1b): [α]D Ϫ26.8 (c 0.53,
MeOH); homo-1592U89 (2b): [α]D Ϫ37.3 (c 0.18, MeOH).
References
1 (a) L. Agrofoglio, E. Suhas, A. Farese, R. Condom, S. R. Challand,
R. A. Earl and R. Guedj, Tetrahedron, 1994, 50, 10 611; (b) A. D.
Borthwick and K. Biggadicke, Tetrahedron, 1992, 48, 571; (c) D. M.
Huryn and M. Okabe, Chem. Rev., 1992, 92, 1745.
2 For recent syntheses of carbovir: (a) N. Katagiri, M. Takebayashi,
H. Kokufuda, C. Kaneko, K. Kanehira and M. Torihara, J. Org.
Chem., 1997, 62, 1580; (b) S. Tanimori, M. Tsubota, M. He and
Paper 7/08261D
Received 17th November 1997
Accepted 12th December 1997
392
J. Chem. Soc., Perkin Trans. 1, 1998