Journal of Medicinal Chemistry
Article
(0%), Ac-[CMPRARGC]c-NH2 (28%), Ac-[CMPRLAGC]c-NH2
(0%), Ac-[CMPRLRAC]c-NH2 (34%), Ac-CMPRLRGA-NH2 (0%),
(31) Armishaw, C. J.; Daly, N. L.; Nevin, S. T.; Adams, D. J.; Craik,
D. J.; Alewood, P. F. Alpha-selenoconotoxins, a new class of potent α7
neuronal nicotinic receptor antagonists. J. Biol. Chem. 2006, 281,
14136−14143.
(32) Cerovsky, V.; Wunsch, E.; Brass, J. Enzymatic semisynthesis of
dicarba analogs of calcitonin. Eur. J. Biochem. 1997, 247, 231−237.
(33) Hase, S.; Morikawa, T.; Sakakibara, S. Synthesis of a biologically
active analog of deamino-8-arginine-vasopressin which does not
contain a disulphide bond. Experientia 1969, 25, 1239−1240.
(34) Kambayashi, Y.; Nakajima, S.; Ueda, M.; Inouye, K. A dicarba
analog of beta-atrial natriuretic peptide (beta-ANP) inhibits guanosine
3′,5′-cyclic monophosphate production induced by alpha-ANP in cul-
tured rat vascular smooth muscle cells. FEBS Lett. 1989, 248, 28−34.
(35) Stymiest, J. L.; Mitchell, B. F.; Wong, S.; Vederas, J. C. Synthesis
of biologically active dicarba analogues of the peptide hormone
oxytocin using ring-closing metathesis. Org. Lett. 2003, 5, 47−49.
(36) Nestor, J. J. Jr. The medicinal chemistry of peptides. Curr. Med.
Chem. 2009, 16, 4399−4418.
(37) Galande, A. K.; Trent, J. O.; Spatola, A. F. Understanding base-
assisted desulfurization using a variety of disulfide-bridged peptides.
Pept. Sci. 2003, 71, 534−551.
(38) Robinson, A. J.; Elaridi, J.; Van Lierop, B. J.; Mujcinovic, S.;
Jackson, W. R. Microwave-assisted RCM for the synthesis of
carbocyclic peptides. J. Pept. Sci. 2007, 13, 280−285.
(39) Jacobsen, O.; Klaveness, J.; Petter Ottersen, O.; Amiry-
Moghaddam, M. R.; Rongved, P. Synthesis of cyclic peptide analogues
of the 3(10) helical Pro138-Gly144 segment of human aquaporin-4 by
olefin metathesis. Org. Biomol. Chem. 2009, 7, 1599−1611.
(40) Hossain, M. A.; Rosengren, K. J.; Zhang, S.; Bathgate, R. A.;
Tregear, G. W.; van Lierop, B. J.; Robinson, A. J.; Wade, J. D. Solid
phase synthesis and structural analysis of novel A-chain dicarba analogs
of human relaxin-3 (INSL7) that exhibit full biological activity. Org.
Biomol. Chem. 2009, 7, 1547−1553.
(41) Illesinghe, J.; Guo, C. X.; Garland, R.; Ahmed, A.; van Lierop,
B.; Elaridi, J.; Jackson, W. R.; Robinson, A. J. Metathesis assisted
synthesis of cyclic peptides. Chem. Commun. 2009, 3, 295−297.
(42) Alexandra Le Chevalier, I.; Anna Maria, P.; Michael, C.; Paolo,
R. Side chain-to-side chain cyclization by click reaction. J. Pept. Sci.
2009, 15, 451−454.
pseudo-peptide analogues of tetragastrin: the importance of the
peptide backbone. J. Med. Chem. 1985, 28, 1874−1879.
(51) Doulut, S.; Rodriguez, M.; Lugrin, D.; Vecchini, F.; Kitabgi, P.;
Aumelas, A.; Martinez, J. Reduced peptide bond pseudopeptide
analogues of neurotensin. Pept. Res. 1992, 5, 30−38.
(52) Lugrin, D.; Vecchini, F.; Doulut, S.; Rodriguez, M.; Martinez, J.;
Kitabgi, P. Reduced peptide bond pseudopeptide analogues of
neurotensin: binding and biological activities, and in vitro metabolic
stability. Eur. J. Pharmacol. 1991, 205, 191−198.
(53) Ma, S.; Spatola, A. F. Conformations of psi [CH2NH]
pseudopeptides. Cyclo[Gly-Pro psi [CH2NH]Gly-D-Phe-Pro]-TFA
and cyclo[Gly-Pro psi [CH2NH]Gly-D-Phe-Pro]. Int. J. Pept. Protein
Res. 1993, 41, 204−206.
(54) Fehrentz, J. A.; Heitz, A.; Castro, B. Synthesis of aldehydic
peptides inhibiting renin. Int. J. Pept. Protein Res. 1985, 26, 236−241.
(55) Ganneau, C.; Moulin, A.; Demange, L.; Martinez, J.; Fehrentz, J.
A. The epimerization of peptide aldehydes: a systematic study. J. Pept.
Sci. 2006, 12, 497−501.
(56) The binding affinity of peptide 22 for the hLDLR was assessed
by Scatchard analysis based on the FRET assay and was estimated at
1.4 μM.
(57) Lefevre, C.; Kang, H. C.; Haugland, R. P.; Malekzadeh, N.;
Arttamangkul, S.; Haugland, R. P. Texas Res-X and Rhodamine Red-X,
new derivatives of sulforhodamine 101 and Lissamine Rhodamine B
with improved labeling and fluorescence properties. Bioconjugate
Chem. 1996, 7, 482−489.
(58) Brooks, B. R.; Brooks, C. L.; Mackerell, A. D.; Nilsson, L.;
Petrella, R. J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch,
S.; Caflisch, A.; Caves, L.; Cui, Q.; Dinner, A. R.; Feig, M.; Fischer, S.;
Gao, J.; Hodoscek, M.; Im, W.; Kuczera, K.; Lazaridis, T.; Ma, J.;
Ovchinnikov, V.; Paci, E.; Pastor, R. W.; Post, C. B.; Pu, J. Z.; Schaefer,
M.; Tidor, B.; Venable, R. M.; Woodcock, H. L.; Wu, X.; Yang, W.;
York, D. M.; Karplus, M. CHARMM: the biomolecular simulation
program. J. Comput. Chem. 2009, 30, 1545−1614.
́
(59) Floquet, N.; Hery-Huynh, S.; Dauchez, M.; Derreumaux, P.;
Tamburro, A. M.; Alix, A. J. P. Structural characterization of VGVAPG,
an elastin-derived peptide. Biopolymers 2004, 76, 266−280.
(60) Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular
dynamics. J. Mol. Graphics 1996, 14 (33−38), 27−28.
(61) Case, D. A.; Cheatham, T. E.; Darden, T.; Gohlke, H.; Luo, R.;
Merz, K. M.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J. The
Amber biomolecular simulation programs. J. Comput. Chem. 2005, 26,
1668−1688.
(62) Trott, O.; Olson, A. J. AutoDock Vina: improving the speed and
accuracy of docking with a new scoring function, efficient optimi-
zation, and multithreading. J. Comput. Chem. 2010, 31, 455−461.
(63) Kwon, H. J.; Lagace, T. A.; McNutt, M. C.; Horton, J. D.;
Deisenhofer, J. Molecular basis for LDL receptor recognition by
PCSK9. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 1820−1825.
(64) Dray, C.; Rougon, G.; Debarbieux, F. Quantitative analysis by in
vivo imaging of the dynamics of vascular and axonal networks in
injured mouse spinal cord. Proc. Natl. Acad. Sci. U.S.A. 2009, 106,
9459−9464.
(43) Jagasia, R.; Holub, J. M.; Bollinger, M.; Kirshenbaum, K.; Finn,
M. G. Peptide cyclization and cyclodimerization by CuI-mediated
azide-alkyne cycloaddition. J. Org. Chem. 2009, 74, 2964−2974.
(44) Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.; Noodleman,
L.; Sharpless, K. B.; Fokin, V. V. Copper(I)-catalyzed synthesis of
azoles. DFT study predicts unprecedented reactivity and intermedi-
ates. J. Am. Chem. Soc. 2004, 127, 210−216.
(45) Tornøe, C. W.; Christensen, C.; Meldal, M. Peptidotriazoles on
solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,
3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem.
2002, 67, 3057−3064.
(46) Touati-Jallabe, Y.; Chiche, L.; Hamze, A.; Aumelas, A.; Lisowski,
V.; Berthomieu, D.; Martinez, J.; Hernandez, J. F. Cyclic peptides with
a diversely substituted guanidine bridge: solid-phase synthesis and
structural analysis. Chem.Eur. J. 2011, 17, 2566−2570.
(47) Breznik, M.; Grdadolnik, S. G.; Giester, G.; Leban, I.; Kikelj, D.
Influence of chirality of the preceding acyl moiety on the cis/trans
ratio of the proline peptide bond. J. Org. Chem. 2001, 66, 7044−7050.
(48) Arg4 and Arg6 were sequentially substituted by lysine in the
preliminary study based on peptide, and these modifications resulted
in a total loss of affinity for the receptor.
(49) Jacobson, K. A.; Marr-Leisy, D.; Rosenkranz, R. P.; Verlander,
M. S.; Melmon, K. L.; Goodman, M. Conjugates of catecholamines. 1.
N-Alkyl-functionalized carboxylic acid congeners and amides related to
isoproterenol. J. Med. Chem. 1983, 26, 492−499.
(50) Martinez, J.; Bali, J. P.; Rodriguez, M.; Castro, B.; Magous, R.;
Laur, J.; Lignon, M. F. Synthesis and biological activities of some
2241
dx.doi.org/10.1021/jm2014919 | J. Med. Chem. 2012, 55, 2227−2241