1134
LETTERS
SYNLETT
bis(triisopropylsilyloxy) 6c was used. Interestingly lactol 6d could be
advantageously employed in the Hoppe reaction to deliver the expected
syn-anti 7d derivative in 70% isolated yield, along with small amounts
of the anti-anti 8d and the syn-syn 9d isomers.
vacuo. The residue was purified by flash chromatography on silica
gel (hexane/ethyl acetate, 90:10) to give compound 7c (660 mg,
70% yield) and 8c (208 mg, 22% yield).
1
7c : H NMR (400 MHz) δ 0.95 (d, 3H, J = 7.0 Hz, CH , CH -3),
3
3
0.97 (d, 3H, J = 7.0 Hz, CH , CH -5), 1.07 {s, 42H, 6CH +
As compounds 7c and 7d were obtained in good yield and present the
expected configurations at C3, C4, C5 and C6, this homoaldol reaction
was used in a synthetic approach to the eastern part of tylonolide 2 via a
modified carbamate derivative in order to introduce the side chain at C-
6.
3
3
12CH ,
2Si[CH(CH ) ] },
1.24
{(m,
12H,
4CH ,
3
3
3 2 3
N[(CH(CH ) ] }, 2.11 (m, 1H, H-3), 2.86 (qt, 1H, J = 6.0, 10.0
3 2 2
Hz, H-5), 3.67 (dd, 1H, J = 8.0, 2.0 Hz, H-4), 3.67 (dd, 1H, J =
9.1, 8.4 Hz, Ha-1), 3.75 (dd, 1H, J = 9.1, 4.8 Hz, Hb-1), 3.78 {m,
1H, N[(CH(CH ) ] }, 4.05 (ddd, 1H, J = 8.5, 5.0, 3.0 Hz, H-2),
3 2 2
4.12 {m, 1H, N[(CH(CH ) ] }, 4.79 (dd, 1H, J = 10.0, 6.5 Hz, H-
6), 7.10 (d, 1H, J = 6.5 Hz, H-7). C NMR (100.6 MHz) δ 5.7
3 2 2
References and Notes
13
1
Tatsuta, K.; Amemiya, Y.; Kanemura, Y.; Takahashi, H.;
Kinoshita, M. Tetrahedron Lett. 1982, 23, 3375. Nicolaou, K. C.;
Seitz, S. P.; Pavia, M. R. J. Am Chem. Soc. 1982, 104, 2030.
Masamune, S.; Lu, L. D-L.; Jackson, W. P.; Kaiho, T.; Toyoda, T.
J. Am. Chem. Soc. 1982, 104, 5523. Grieco, P. A.; Inanaga, J.; Lin,
N-H.; Yanami, T. J. Am. Chem. Soc. 1982 104, 5781. Tanaka, T.;
Oikawa, Y.; Hamada, T.; Yonemitsu, O. Chem. Pharm. Bull. 1987,
35, 2219. Omura, S. Ed. Macrolides Antibiotics Ed. Academic
Press, 1984. Kirst, H. A. in Recent progress in the Chemical
Synthesis of Antibiotics Lukacs, G.; Ohno, M. ED, Springer
Verlag 1990, 39.
(CH , CH -3), 11.1 {3CH, Si[CH(CH ) ] }, 12.3 {3CH,
3
3
3 2 3
Si[CH(CH ) ] }, 17.1 {12CH , 2Si[CH(CH ) ] }, 17.3 (CH ,
3 2 3
3
3 2 3
3
CH -5), 19.6, 20.6 {4CH , N[(CH(CH ) ] }, 33.6 (CH, C-5), 37.3
3
3
3 2 2
(CH, C-3), 44.8, 45.9 {2CH, N[(CH(CH ) ] }, 64.0 (CH , C-1),
3 2 2
2
77.0 (CH, C-4), 77.9 (CH, C-2), 113.4 (CH, C-6), 134.5 (CH, C-
7), 152.2 (C, CO).
1
8c : H NMR (400 MHz) δ 0.81 (d, 3H, J = 7.0 Hz, CH , CH -3),
3
3
1.07 {s, 42H, 6CH + 12CH , 2Si[CH(CH ) ] }, 1.18 (d, 3H, J =
3
3 2 3
7.0 Hz, CH , CH -5), 1.21 {(m, 12H, 4CH , N[(CH(CH ) ] },
3
3
3
3 2 2
1.92 (m, 1H, H-3), 2.79 (m, 1H, H-5), 3.57 (dd, 1H, J = 9.0, 1.0
Hz, H-4), 3.66-4.20 (m, 6H, H -1 + N[(CH(CH ) ] + OH + H-2},
2
3 2 2
2
3
Le Ménez, P.; Fargeas, V.; Berque, I.; Poisson, J.; Ardisson, J.;
Lallemand, J.-Y.; Pancrazi, A. J. Org. Chem. 1995, 60, 3592.
4.91 (dd, 1H, J = 10.0, 6.5 Hz, H-6), 7.0 (d, 1H, J = 6.5 Hz, H-7).
13
C NMR (100.6 MHz) δ 12.1 {3CH, Si[CH(CH ) ] }, 12.5
3 2 3
{3CH, Si[CH(CH ) ] }, 13.7 (CH , CH -3), 18.1 {12CH ,
Hoppe, D. Angew. Chem., Int. Ed. Engl. 1984, 23, 932. Hoppe, D.;
Zschage, O. Angew. Chem., Int. Ed. Engl. 1989, 28, 69. Zschage,
O.; Hoppe, D. Tetrahedron 1992, 48, 5657 and references cited
therein.
3 2 3
3
3
3
2Si[CH(CH ) ] }, 18.4 (CH , CH -5), 20.5, 21.6 {4CH ,
3 2 3
3
3
3
N[(CH(CH ) ] }, 33.3 (CH, C-5), 40.7 (CH, C-3), 45.9, 46.7
3 2 2
{2CH, N[(CH(CH ) ] }, 64.9 (CH , C-1), 77.0 (CH, C-4), 78.8
3 2 2
2
(CH, C-2), 110.8 (CH, C-6), 134.5 (CH, C-7), 152.7 (C, CO).
4
5
Hoppe, D.; Hense, T. Angew. Chem., Int. Ed Engl. 1997, 36, 2282.
8
9
Henrot, S.; Larchevêque, M.; Petit, Y. Synth. Commun. 1986, 16,
183. Hamada, Y.; Yokokawa, F.; Kabeya, M.; Hatano, K.; Kurono,
Y.; Shiori, T. Tetrahedron Lett. 1996, 52, 8297.
Smith, N. D.; Kocienski, P. J.; Street, S. D. A. Synthesis 1996,
652. Férézou, J.-P.; Julia, M.; Li, Y.; Liu, L. W.; Pancrazi, A. Bull.
Soc. Chim. Fr. 1995, 132, 428. Férézou, J.-P.; Julia, M.;
Khourzom, R.; Li, Y.; Liu, L. W.; Pancrazi, A.; Robert, P. Synlett
1991, 611.
The mixture of 7a and 8a was treated in acidic conditions
(Amberlyst 15, MeOH, 20°C, 12 h, 82% yield) to deliver triols 15
and 10.
6
7
Hoffmann, R. W.; Lanz, J.; Metternich, R.; Tarara, G.; Hoppe, D.
Angew. Chem., Int. Ed Engl. 1987, 26, 1145. Hoppe, D.; Tarara,
G.; Wilckens, M. Synthesis 1989, 83.
10 Rychnovsky, S. D.; Skalitzky, D. J. Tetrahedron Lett. 1990, 31,
945.
To a solution of N,N,N',N'-tetramethylethylenediamine (TMEDA,
0.5 mL, 3.3 mmol, 2.2 equiv) in dry diethyl ether (1 mL) at -78°C,
under argon atmosphere, was added n-BuLi (1.6M in hexane, 2
mL, 3.3 mmol, 2.2 equiv). After stirring for 30 min at -78°C, a
11 The data of X-ray structure analyses were deposited as CIF
archive files with the Cambridge Crystallographic Data Center
(CCDC), 12 Union Road, Cambridge CB2 IEZ, UK. They are also
available by e-mail from one of us at prange@sgi1sb.univ-
paris13.fr.
3
solution of the crotyl carbamate 3b (597 mg, 3 mmol, 2 equiv),
in dry diethyl ether (2 mL), was slowly added. After stirring for 30
Compound 16: Space Group: P2 monoclinic, Z=2. Parameters:
1
i
min at -78°C, titanum tetraisopropoxide (Ti(O Pr) , 2.7 mL, 9
a=17.206(8) Å, b=8.739(2) Å, c=12.605(3) Å, β=109.99(8)°,
4
3
mmol, 6 equiv) was slowly added, and the mixture became limpid
and turned orange. After 30 min at -78°C, the aldehyde 6c (645
mg, 1.5 mmol), in dry diethyl ether (1 mL) was slowly added and
the reaction mixture was stirred for 2 h at -78°C and quenched at
-78°C by addition of methanol (5 mL). The solution was then
poured into a mixture of diethyl ether/aqueous HCl solution (2N).
After extraction with diethyl ether, the organic layer was washed
with brine, dried over sodium sulfate, filtered and concentrated in
V=1781(2) Å , crystal size=0.5x0.2x0.2 mm, d =1.092, abs. coef.
x
-1
0.59 mm , F
= 634. Anisotropic refinement R=5.4 % (obs.
000
data: 1139 F's).
Compound 17: Space Group: P2 2 2 orthorhombic, Z=4.
1
1 1
Parameters: a=27.310(4) Å, b=18.793(4) Å, c=9.350(1) Å,
3
V=4799(1) Å , crystal size = 0.4x0.3x0.03 mm, d = 1.312, abs.
x
-1
coef. 0.82 mm , F
= 1992. Anisotropic refinement : R=5.5%
000
(obs. data : 2516 F's).