COMMUNICATIONS
Oallyl
OR
F
O
OH
O
OH
O
F
2
6
4
6
4
2
HO
HO
O
Cl
HO
Cl
HO
O
NO2
O
O
NO2
H
H
H
H
N
N
H
N
H
HO2C
O
N
N
a
N
NH
H
H
NH2
NH
N
H
O
H
H
O
86%
O
N(Me)Boc
O
N(Me)Boc
O
O
NH
NH
O
O
O
5
5
NHDdm
CH2CHMe2
CH2CHMe2
NHDdm
21
22
MeHN
7
MeHN
7
OBn
OBn
OBn
OBn
23
BnO
BnO
Oallyl
Oallyl
X
b
95%
Cl
O
O
O
O
6
4
6
2
4
2
Cl
HO
Cl
HO
OH
OH
O
O
O
O
H
e, f
1
H
H
N
g, h, i
dr = 5:1
H
N
H
N
H
N
vancomycin
aglycon
N
N
H
68%
H
N
H
O
NH
NH
O
N
H
O
H
O
H
O
N(Me)Boc
O
O
N(Me)Boc
O
O
NH
NH
O
O
O
5
5
CH2CHMe2
CH2CHMe2
NHDdm
NHDdm
MeHN
7
HO
OBn
OBn
7
OBn
OBn
24 X = NO2
25 X = Cl
c, d
65%
26
BnO
BnO
Scheme 3. Assemblage of the vancomycin aglycon. a) EDCI, HOAt, THF, 08C; b) CsF, DMSO, room temperature; c) Zn0, HOAc, EtOH, 408C; d) HBF4,
tBuONO, MeCN, then CuCl, CuCl2, H2O; e) N2O4, NaOAc, CH2Cl2/CH3CN, 08C; f) H2O2, LiOH, THF/H2O; g) [Pd(PPh3)4], morpholine, THF; h) 10% Pd/
C, 1,4-cyclohexadiene, EtOH, room temperature; i) TFA, DMS, CH2Cl2, 08C to room temperature. See ref. [6] for abbreviations.
[9] a) D. A. Evans, C. J. Dinsmore, D. A. Evrard, K. M. DeVries, J. Am.
Keywords: antibiotics ´ eremomycin ´ natural products ´
total synthesis ´ vancomycin
Chem. Soc. 1993, 115, 6426 ± 6427; b) D. A. Evans, C. J. Dinsmore,
Tetrahedron Lett. 1993, 34, 6029 ± 6032.
[10] For the synthesis of orienticin C aglycon see: a) D. A. Evans, C. J.
Dinsmore, A. M. Ratz, D. A. Evrard, J. C. Barrow, J. Am. Chem. Soc.
1997, 119, 3417 ± 3418; b) D. A. Evans, J. C. Barrow, P. S. Watson,
A. M. Ratz, C. J. Dinsmore, D. A. Evrard, K. M. DeVries, J. A.
Ellman, S. D. Rychnovsky, J. Lacour, J. Am. Chem. Soc. 1997, 119,
3419 ± 3420.
[1] M. H. McCormick, W. M. Stark, G. E. Pittenger, R. C. Pittenger,
G. M. McGuire, Antibiot. Annu. 1955 ± 56, 606 ± 611.
[2] For a comprehensive discussion of the vancomycin antibiotics see:
Glycopeptide Antibiotics (Ed.: R. Nagarajan), Marcel Dekker, New
York, 1994.
[3] a) D. H. Williams, Natl. Prod. Reports 1996, 469 ± 477; b) M. Foldes, R.
Munro, T. C. Sorrell, S. Shankar, M. Toohey, J. Antimicrob. Chemo-
ther. 1983, 11, 21 ± 26.
[4] a) S. Tabaqchali, Lancet, 1997, 350, 1644 ± 1645; b) R. C. Moellering,
Clinical Infectious Diseases 1998, 26, 1196 ± 1199; c) C. T. Walsh, S. L.
Fisher, I.-S. Park, M. Prahalad, Z. Wu, Chem. Biol. 1996, 3, 21 ± 28, and
references therein.
[11] D. A. Evans, C. J. Dinsmore, P. S. Watson, M. R. Wood, T. I. Richard-
son, B. W. Trotter, J. L. Katz, Angew. Chem. 1998, 111, 2868 ± 2872;
Angew. Chem. Int. Ed. 1998, 37, 2704 ± 2708.
[12] The seven amino acid residues are numbered consecutively starting
from the amino terminus. The M(X ± Y) nomenclature refers to the
macrocycle containing an oxidative cross-link between aryl groups of
residues X and Y. Bicyclic moieties will be identified as M(W± Y)(X ±
Z).
[13] Amino acid 4 was derived from (R)-para-hydroxy-phenylglycine.
[14] Compound 4b was prepared by the chlorination of 4a: F. D. March,
W. B. Farnham, D. J. Sam, B. E. Smart, J. Am. Chem. Soc. 1982, 104,
4680 ± 4682. 4-Fluoro-3-nitrobenzaldehyde (4a) was prepared from 4-
fluorobenzaldehyde: F. Michael, D. Noffz, Chem. Ber. 1957, 90, 1586 ±
1589. Dr. S. Rubenstein is acknowledged for the preparation of this
material.
[15] Alternate conditions and reagents were plagued by competitive
endocyclic oxazolidinone hydrolysis and/or undesired nucleophilic
displacement of the fluoride. D. A. Evans, T. C. Britton, J. A. Ellman,
Tetrahedron Lett. 1987, 28, 6141 ± 6144.
[16] HATU-mediated peptide coupling: L. A. Carpino, A. El-Fahan, C. A.
Minor, F Albericio, J. Chem. Soc. Chem. Commun. 1994, 201 ± 203.
[17] The removal of the TBS protecting group highlighted the significant
reactivity difference between the chloro and des-chloro substrates.
Treatment of 13b with TBAF resulted in immediate M(4 ± 6)
cyclization with reduced diastereoselection. See also ref. [24].
[18] Studies of the cyclization of 14a revealed that the observed
atropselectivity depended significantly on the base used, varying
from 4:1 (KF) to 10:1 (Na2CO3) in favor of the unnatural atropisomer.
It was further observed that cyclization of substrates in which the
meta-phenols of amino acid 4 were both unmasked proceeded with
negligible selectivity under a variety of conditions, necessitating the
synthesis of a fully differentiated triphenol.
[5] For reviews on methodology relevant to the synthesis of the
vancomycin aglycon structure see: a) D. A. Evans, K. D. DeVries in
ref. [2], pp. 63 ± 103; b) A. V. Rama Rao, M. K. Gurjar, K. L. Reddy,
A. S. Rao, Chem. Rev. 1995, 95, 2135 ± 2168; c) J. Zhu, Synlett. 1997,
133 ± 144; d) R. M. Williams, J. A. Hendrix, Chem. Rev. 1992, 92, 889 ±
917.
[6] Abbreviations: dr: diastereomer ratio; Xp: (4S)-4-(phenylmethyl)-2-
oxazolidinone; Tfa: trifluoroacetyl TFA: trifluoroacetic acid; Boc:
tert-butoxycarbonyl; NOE: nuclear Overhauser effect; Tf: trifluoro-
methanesulfonyl; Ms: methanesulfonyl; Bn: benzyl; Piv: pivaloyl;
Ddm: 4,4'dimethoxydiphenylmethyl; EDCI ´ HCl: 1-(3-(dimethylami-
no)propyl)-3-ethylcarbodiimide hydrochloride; HOBt: 1-hydroxy-
benzotriazole; DMAP: 4-dimethylaminopyridine; DMS: dimethyl-
sulfide; TFAA: trifluoroacetic anhydride; HATU: O-(7-azaben-
zotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate; HOAt:
7-aza-1-hydroxybenzotriazole; LDA: lithium diisopropylamide; dppf:
1,1'-bis(diphenylphosphanyl)ferrocene.
[7] a) D. A. Evans, D. A. Evrard, S. D. Rychnovsky, T. Früh, W. G.
Wittingham, K. M. DeVries, Tetrahedron Lett. 1992, 33, 1189 ± 1192;
b) D. A. Evans, T. C. Britton, J. A. Ellman, R. L. Dorow, J. Am. Chem.
Soc. 1990, 112, 4011 ± 4030; c) D. A. Evans, A. E. Weber, J. Am. Chem.
Soc. 1987, 109, 7151 ± 7157.
[8] a) D. A. Evans, J. A. Ellman, K. M. DeVries, J. Am. Chem. Soc. 1989,
111, 8912 ± 8914; b) D. A. Evans, C. J. Dinsmore, A. M. Ratz,Tetrahe-
dron Lett. 1997, 38, 3189 ± 3192; c) D. A. Evans, P. S. Watson,
Tetrahedron Lett. 1996, 37, 3251 ± 3254.
[19] Following diazotization/reduction of aniline 16, eremomycin aglycon
(2) was synthesized by a route analogous to that presented for
Angew. Chem. Int. Ed. 1998, 37, No. 19
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1998
1433-7851/98/3719-2703 $ 17.50+.50/0
2703