Beilstein J. Org. Chem. 2018, 14, 891–899.
8. Campbell, K. N.; Campbell, B. K. Org. Synth.; Coll. Vol. 4; 1963;
pp 763–766.
2053 potentiostat-galvanostat equipped with an Amel 731 inte-
grator. All experiments were carried out in a divided glass cell
separated through a porous glass plug filled with a layer of gel
(i.e., methyl cellulose 0.5 vol % dissolved in DMF/Et4NBF4,
1.0 mol dm−3). Pt spirals (apparent area 0.8 cm2) were used as
both cathode and anode, unless otherwise specified. Catholyte:
5 mL of DMF/0.1 M Et4NBF4; anolyte: 2 mL of the same sol-
vent of catholyte. 2,2-Dibromovinylnaphthalene (0.5 mmol)
was present in the catholyte during electrolysis. The number of
Coulombs and the electrolysis potential/current were varied as
reported in the text. At the end of the electrolysis, the catholyte
was poured in an excess of water and extracted with petroleum
ether 40–60 (3 × 20 mL). Flash column chromatography
(eluent: petroleum ether/ethyl acetate from 100:0 to 90:10) gave
purified products.
9. Müller, S. G.; Liepold, B.; Roth, G. J.; Bestmann, H. J. Synlett 1996,
10.Roth, G. J.; Liepold, B.; Müller, S. G.; Bestmann, H. J. Synthesis 2004,
11.Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 13, 3769–3772.
12.Sahu, B.; Muruganantham, R.; Namboothiri, I. N. N. Eur. J. Org. Chem.
13.Zhao, M.; Kuang, C.; Yang, Q.; Cheng, X. Tetrahedron Lett. 2011, 52,
14.Morri, A. K.; Thummala, Y.; Doddi, V. R. Org. Lett. 2015, 17,
15.Heravi, M. M.; Asadi, S.; Nazari, N.; Lashkariani, M. B.
Curr. Org. Chem. 2015, 19, 2196–2219.
16.Steckhan, E.; Arns, T.; Heineman, W. R.; Hilt, G.; Hoormann, D.;
Jörissen, J.; Kröner, L.; Lewall, B.; Pütter, H. Chemosphere 2001, 43,
Supporting Information
17.Frontana-Uribe, B. A.; Little, R. D.; Ibanez, J. G.; Palma, A.;
Vasquez-Medrano, R. Green Chem. 2010, 12, 2099–2119.
Supporting Information File 1
Detailed experimental procedures, NMR spectra and cyclic
voltammetries.
18.Schäfer, H. J. C. R. Chim. 2011, 14, 745–765.
19.Horn, E. J.; Rosen, B. R.; Baran, P. S. ACS Cent. Sci. 2016, 2,
20.Casanova, J.; Reddy, V. P. Electrochemistry of the carbon−halogen
bond. In The Chemistry of Functional Groups, Supplement D2;
Patai, S.; Rappoport, Z., Eds.; Wiley: New York, 1995; pp 1003–1067.
21.Peters, D. G. Oxidation and reduction of halogen-containing
compounds. In Encyclopedia of Electrochemistry; Schäfer, H. J., Ed.;
Wiley-VCH Verlag GmbH: Weinheim, Germany, 2004; Vol. 8,
pp 217–233.
Acknowledgements
The authors acknowledge Sapienza University of Rome for
financial support and Mr Marco Di Pilato for his help with the
voltammetric analysis.
22.Torii, S. Electroreduction of Halogenated Compounds. Electroorganic
Reduction Synthesis; Wiley-VCH Verlag GmbH: Weinheim, Germany,
2006; Vol. 1, pp 331–432.
ORCID® iDs
23.Peters, D. G. In Organic Electrochemistry, 5th ed.; Hammerich, O.;
Speiser, B., Eds.; Taylor & Francis, LLC: London, 2016; pp 941–980.
24.Martin, E. T.; McGuire, C. M.; Mubarak, M. S.; Peters, D. G.
Chem. Rev. 2016, 116, 15198–15234.
References
25.Feroci, M.; Orsini, M.; Palombi, L.; Sotgiu, G.; Inesi, A.
Electrochim. Acta 2004, 49, 635–640.
1. Lei, J.; Su, L.; Zeng, K.; Chen, T.; Qiu, R.; Zhou, Y.; Au, C.-T.;
Yin, S.-F. Chem. Eng. Sci. 2017, 171, 404–425.
26.Strobel, S. M.; Szklark, G. D.; He, Y. Q.; Foroozesh, M.; Alworth, W. L.;
Roberts, E. S.; Hollenberg, P. F.; Halpert, J. R.
2. Chinchilla, R.; Nájera, C. Chem. Rev. 2014, 114, 1783–1826.
J. Pharmacol. Exp. Ther. 1999, 290, 445–451.
3. Ackermann, L. Acc. Chem. Res. 2014, 47, 281–295.
27.Beebe, L. E.; Roberts, E. S.; Fornwald, L. W.; Hollenberg, P. F.;
Alworth, W. L. Biochem. Pharmacol. 1996, 52, 1507–1513.
4. Rodríguez, M. R.; Beltrán, Á.; Mudarra, Á. L.; Álvarez, E.; Maseras, F.;
Díaz-Requejo, M. M.; Pérez, P. J. Angew. Chem., Int. Ed. 2017, 56,
28.Mubarak, M. S.; Peters, D. G. Curr. Opin. Electrochem. 2017, 2,
5. Islas, R. E.; Cárdenas, J.; Gaviño, R.; García-Ríos, E.;
Lomas-Romero, L.; Morales-Serna, J. A. RSC Adv. 2017, 7,
29.Gennaro, A.; Isse, A. A.; Mussini, P. R. In Organic Electrochemistry,
5th ed.; Hammerich, O.; Speiser, B., Eds.; Taylor & Francis, LLC:
London, 2016; pp 917–940.
6. Takano, S.; Kochi, T.; Kakiuchi, F. Chem. Lett. 2017, 46, 1620–1623.
30.The use of glassy carbon (GC) as cathode was not possible probably
due to adsorption of material on the electrode surface, which led to
electrical insulation.
7. Liu, H.; Lu, L.; Hua, R. Tetrahedron 2017, 73, 6428–6435.
898