S. Sano et al. / Tetrahedron: Asymmetry 9 (1998) 3611–3614
3613
Fig. 1. Selected 1H–1H NOE enhancements (400 MHz 1H NMR, CDCl3) for (2R,5S)-4a–c
(2R,5S)-5b exhibited a significant upfield shift in comparison with the chemical shift (δ 0.58 or 0.87
ppm in CDCl3, 0.59 or 0.89 ppm in THF-d8, 0.69 or 0.95 ppm in methanol-d4, and 0.71 or 1.01 ppm in
benzene-d6) of (2S,5S)-5b.4 Such a phenomenon seems to be rationalized in terms of the shielding effect
of the phenyl moiety, which probably adopts a folded conformation with the bislactim ether moiety.5,6
Hydrolysis of (2S,5S)-5b–d with 2 mol equiv. of 0.2 N HCl in MeCN at room temperature afforded
the corresponding α-alkylated serines (S)-6b–d as each enantiomerically pure compound (6b: 58%, 6c:
16%, and 6d: 31% yields).7 Unfortunately, (S)-6a was not obtained after hydrolysis of (2S,5S)-5a under
the acidic conditions.8
In conclusion, some α-alkylated serines were synthesized, each in enantiomerically pure form, by
using chiral bislactim ether (5S)-3. Thus, we demonstrated that σ-symmetric diethyl aminomalonate 1
could be utilized as the chiral serine carbanion synthon.
References
1. Wirth, T. Angew. Chem., Int. Ed. Engl. 1997, 36, 225–227 and references cited therein.
2. For recent references, see: (a) Chinchilla, R.; Falvello, L. R.; Galindo, N.; Nájera, C. Angew. Chem., Int. Ed. Engl. 1997,
36, 995–997. (b) Hatakeyama, S.; Matsumoto, H.; Fukuyama, H.; Mukugi, Y.; Irie, H. J. Org. Chem. 1997, 62, 2275–2279.
(c) Belokon’, Y. N.; Kochetkov, K. A.; Churkina, T. D.; Ikonnikov, N. S.; Chesnokov, A. A.; Larionov, O. V.; Parmár, V.
S.; Kumar, R.; Kagan, H. B. Tetrahedron: Asymmetry 1998, 851–857. (d) Carda, M.; Murga, J.; Rodríguez, S.; González,
F.; Castillo, E.; Marco, J. A. Tetrahedron: Asymmetry 1998, 1703–1712. (e) Matsushita, M.; Maeda, H.; Kodama, M.
Tetrahedron Lett. 1998, 39, 3749–3752.
3. (a) Sano, S.; Kobayashi, Y.; Kondo, T.; Takebayashi, M.; Maruyama, S.; Fujita, T.; Nagao, Y. Tetrahedron Lett. 1995, 36,
2097–2100. (b) Sano, S.; Liu, X.-K.; Takebayashi, M.; Kobayashi, Y.; Tabata, K.; Shiro, M.; Nagao, Y. Tetrahedron Lett.
1995, 36, 4101–4104.
21
1
4. (2S,5S)-5b: colorless needles (CH2Cl2–n-hexane), mp 63–64°C, [α]D −79.7 (c 1.00, MeOH), H NMR (200 MHz,
CDCl3) δ 0.58 (3H, d, J=6.8 Hz), 0.87 (3H, d, J=6.8 Hz), 1.28 (3H, t, J=7.1 Hz), 1.34 (3H, t, J=7.1 Hz), 2.14 (1H, dsept,
J=3.2, 6.8 Hz), 2.28 (1H, X of ABX, t, JAX=JBX=6.7 Hz), 2.85 (1H, A0 of A0B0, d, J=13.0 Hz), 2.91 (1H, d, J=3.2 Hz),
3.06 (1H, B0 of A0B0, d, J=13.0 Hz), 3.71 (1H, A of ABX, dd, JAX=6.7, JAB=7.2 Hz), 3.79 (1H, B of ABX, dd, JBX=6.7,
J
AB=7.2 Hz), 3.97–4.27 (4H, m), 6.97–7.02 (2H, m), 7.14–7.20 (3H, m); IR (CHCl3) 3600, 1693, 1384, 1367, 1215 cm−1
;
HREI-MS calcd for C19H28N2O3 MW 332.2099, found m/e 332.2097 (M+). Anal. calcd for C19H28N2O3: C, 68.65; H,
21
8.49; N, 8.43. Found: C, 68.32; H, 8.51; N, 8.33. (2R,5S)-5b: colorless needles (CH2Cl2–n-hexane), mp 91–92°C, [α]D
1
+91.9 (c 0.51, CHCl3), H NMR (200 MHz, CDCl3) δ −0.05 (3H, d, J=6.8 Hz), 0.81 (3H, d, J=6.8 Hz), 1.28 (3H, t,
J=7.1 Hz), 1.36 (3H, t, J=7.1 Hz), 1.76 (1H, dsept, J=4.2, 6.8 Hz), 1.92–2.08 (1H, brs), 2.84 (1H, A of AB, d, J=12.6 Hz),
3.18 (1H, B of AB, d, J=12.6 Hz), 3.61 (1H, A0 of A0B0, d, J=10.6 Hz), 3.72 (1H, d, J=4.2 Hz), 3.78 (1H, B0 of A0B0, d,