3812 J. Am. Chem. Soc., Vol. 122, No. 16, 2000
Kusama et al.
single endo conformer containing C9R,C10â substituents ir-
Scheme 1. Retrosynthetic Analysis
respective of the geometry of the dienol silyl ether moiety (eq
1).
We have previously described a synthesis of the relatively
simple taxusin, where the present methodology was efficiently
applicable for construction of the taxusin ABC-tricarbocycle.
Subsequent functional group manipulations completed the total
synthesis of (+)-taxusin.8b
Considering a much more complex and challenging structure
as well as important biological activities, total syntheses of
(7) Taxol synthesis: (a) Holton, R. A.; Somoza, C.; Kim, H.-B.; Liang,
F.; Biediger, R. J.; Boatman, P. D.; Shindo, M.; Smith, C. C.; Kim, S.;
Nadizadeh, H.; Suzuki, Y.; Tao, C.; Vu, P.; Tang, S.; Zhang, P.; Murthi,
K. K.; Gentile, L. N.; Liu, J. H. J. Am. Chem. Soc. 1994, 116, 1597. Holton,
R. A.; Kim, H.-B.; Somoza, C.; Liang, F.; Biediger, R. J.; Boatman, P. D.;
Shindo, M.; Smith, C. C.; Kim, S.; Nadizadeh, H.; Suzuki, Y.; Tao, C.;
Vu, P.; Tang, S.; Zhang, P.; Murthi, K. K.; Gentile, L. N.; Liu, J. H. J. Am.
Chem. Soc. 1994, 116, 1599. (b) Nicolaou, K. C.; Nantermet, P. G.; Ueno,
H.; Guy, R. K.; Couladouros, E. A.; Sorensen, E. J. J. Am. Chem. Soc.
1995, 117, 624. Nicolaou, K. C.; Liu, J.-J.; Yang, Z.; Ueno, H.; Sorensen,
E. J.; Claiborne, C. F.; Guy, R. K.; Hwang, C.-K.; Nakada, M.; Nantermet,
P. G. J. Am. Chem. Soc. 1995, 117, 634. Nicolaou, K. C.; Yang, Z.; Liu,
J.-J.; Nantermet, P. G.; Claiborne, C. F.; Renaud, J.; Guy, R. K.; Shibayama,
K. J. Am. Chem. Soc. 1995, 117, 645. Nicolaou, K. C.; Ueno, H.; Liu,
J.-J.; Nantermet, P. G.; Yang, Z.; Renaud, J.; Paulvannan, K.; Chadha, R.
J. Am. Chem. Soc. 1995, 117, 653. (c) Danishefsky, S. J.; Masters, J. J.;
Young, W. B.; Link, J. T.; Snyder, L. B.; Magee, T. V.; Jung, D. K.; Isaacs,
R. C. A.; Bornmann, W. G.; Alaimo, C. A.; Coburn, C. A.; Di Grandi, M.
J. J. Am. Chem. Soc. 1996, 118, 2843. (d) Wender, P. A.; Badham, N. F.;
Conway, S. P.; Floreancig, P. E.; Glass, T. E.; Gra¨nicher, C.; Houze, J. B.;
Ja¨nichen, J.; Lee, D.; Marquess, D. G.; McGrane, P. L.; Meng, W.;
Mucciaro, T. P.; Mu¨hlebach, M.; Natchus, M. G.; Paulsen, H.; Rawlins, D.
B.; Satkofsky, J.; Shuker, A. J.; Sutton, J. C.; Taylor, R. E.; Tomooka, K.
J. Am. Chem. Soc. 1997, 119, 2755. Wender, P. A.; Badham, N. F.; Conway,
S. P.; Floreancig, P. E.; Glass, T. E.; Houze, J. B.; Krauss, N. E.; Lee, D.;
Marquess, D. G.; McGrane, P. L.; Meng, W.; Natchus, M. G.; Shuker, A.
J.; Sutton, J. C.; Taylor, R. E. J. Am. Chem. Soc. 1997, 119, 2757. (e)
Mukaiyama, T.; Shiina, I.; Iwadare, H.; Sakoh, H.; Tani, Y.; Hasegawa,
M.; Saitoh, K. Proc. Jpn. Acad. Ser. B 1997, 73, 95. Shiina, I.; Iwadare,
H.; Sakoh, H.; Hasegawa, M.; Tani, Y.; Mukaiyama, T. Chem. Lett. 1998,
1. Shiina, I.; Saitoh, K.; Fre´chard-Ortuno, I.; Mukaiyama, T. Chem. Lett.
1998, 3. Mukaiyama, T.; Shiina, I.; Iwadare, H.; Saitoh, M.; Nishimura,
T.; Ohkawa, N.; Sakoh, H.; Nishimura, K.; Tani, Y.; Hasegawa, M.;
Yamada, K.; Saitoh, K. Chem. Eur. J. 1999, 5, 121.
(8) Taxusin synthesis: (a) Holton, R. A.; Juo, R. R.; Kim, H.-B.;
Williams, A. D.; Harusawa, S.; Lowenthal, R. E.; Yogai, S. J. Am. Chem.
Soc. 1988, 110, 6558. (b) Hara, R.; Furukawa, T.; Horiguchi, Y.; Kuwajima,
I. J. Am. Chem. Soc. 1996, 118, 9186. Hara, R.; Furukawa, T.; Kashima,
H.; Kusama, H.; Horiguchi, Y.; Kuwajima, I. J. Am. Chem. Soc. 1999, 121,
3072. (c) Paquette, L. A.; Zhao, M. J. Am. Chem. Soc. 1998, 120, 5203.
Paquette, L. A.; Wang, H.-L.; Su, Z.; Zhao, M. J. Am. Chem. Soc. 1998,
120, 5213.
(9) (a) Horiguchi, Y.; Furukawa, T.; Kuwajima, I. J. Am. Chem. Soc.
1989, 111, 8277. (b) Furukawa, T.; Morihira, K.; Horiguchi, Y.; Kuwajima,
I. Tetrahedron 1992, 48, 6975. (c) Seto, M.; Morihira, K.; Katagiri, S.;
Furukawa, T.; Horiguchi, Y.; Kuwajima, I. Chem. Lett. 1993, 133. (d)
Morihira, K.; Seto, M.; Furukawa, T.; Horiguchi, Y.; Kuwajima, I.
Tetrahedron Lett. 1993, 34, 345.
natural taxol and its structural analogues are expected to bring
much greater advances both in synthetic organic chemistry and
in the clinical field. We explored an efficient pathway to the
more challenging (-)-taxol. This paper describes the full details
of our synthesis of (-)-taxol.10
Synthetic Plan
Our program for taxol synthesis was based on the initial
construction of endo tricarbocyclic intermediate I (Scheme 1)
with correct stereochemistry at C1 and C2, followed by
appropriate functional group manipulations on the B- and
C-rings. The structural features of I favor an introduction of
the C19-methyl from the convex face of the C-ring. Our choice
of a C-ring fragment was rather crucial at this stage, but among
several candidates, we preferred a cyclohexadiene derivative
since it was expected that the use of the diene C-ring fragment
III would permit an eventual installation of C4 and C7 oxygen
functionalities from the convex â-face of I. We also envisioned
that the present approach would lead to an enantioselective
synthesis of taxol by using the aldehyde II with a chiral center
corresponding to the C1 site. Thus, a chelation-controlled
coupling of the optically active R-hydroxy aldehyde11 with a
C-ring fragment would confirm the stereochemical outcome at
the C1 and C2 sites, and a subsequent B-ring cyclization would
lead to the diastereoselective formation of the key intermediate
I for taxol. On the basis of the retrosynthetic analysis shown in
Scheme 1, we executed an enantioselective total synthesis of
(-)-taxol.
Enantioselective Preparation of the A-Ring Fragment
The optically active A-ring fragment 8 was prepared as
follows (Schemes 2 and 3).11 Addition of lithiated propargyl
ether to propionaldehyde followed by Lindlar reduction and
(10) For the preliminary communication, see: Morihira, K.; Hara, R.;
Kawahara, S.; Nishimori, T.; Nakamura, N.; Kusama, H.; Kuwajima, I. J.
Am. Chem. Soc. 1998, 120, 12980.
(11) (a) Nakamura, T.; Waizumi, N.; Horiguchi, Y.; Kuwajima, I.
Tetrahedron Lett. 1994, 35, 7813. (b) Seto, M.; Morihira, K.; Horiguchi,
Y.; Kuwajima, I. J. Org. Chem. 1994, 59, 3165.