10.1002/chem.202004300
Chemistry - A European Journal
FULL PAPER
techniques or in an MBraun inert atmosphere glovebox containing an
atmosphere of high purity dinitrogen. Hexane, toluene, diethyl ether, THF,
and acetonitrile were dried by standard methods. C6D6, CD3CN, and D8-
THF were stirred over a sonicated potassium mirror for a period of 48 h
and recondensed into a Schlenk tube containing activated 4 Å mol sieves.
[7]
[8]
[9]
Y. Wang, M. Karni, S. Yao, Y. Apeloig, and M. Driess, J. Am. Chem.
Soc., 2019, 141, 1655 − 1664.
Y. Wang, M. Karni, S. Yao, A. Kaushansky, Y. Apeloig, and M. Driess,
J. Am. Chem. Soc., 2019, 141, 12916 − 12927.
NMR spectra were recorded on
a Bruker AV 200, 400, or 500
(a) P. A. Rudd, S. Liu, N. Planas, E. Bill, L. Gagliardi, and C. C. Lu,
Angew. Chem. Int. Ed., 2013, 52, 4449 – 4452; (b) R. C. Cammarota, L.
J. Clouston, and C. C. Lu, Coord. Chem. Rev., 2017, 334, 100 – 111.
1
Spectrometer. The H and 13C{1H} NMR spectra were referenced to the
residual solvent signals as internal standards. 11B NMR spectra were
externally calibrated with BF3·OEt2 (15% in CDCl3); 31P NMR spectra
were externally calibrated with H3PO4 (85% in H2O). The starting material
NHC (NHC = [:C{N(Pri)C(H)}2]) was synthesized according to the known
literature procedure.26 All other reagents were used as received.
[10] (a) A. J. Arduengo, H. V. R. Dias, and J. C. Calabrese, Chem. Lett.,
1997, 26, 143 – 144; (b) T. Krachko, and J. C. Slootweg, Eur. J. Inorg.
Chem., 2018, 2734 – 2754; O. Back, M. Henry-Ellinger, C. D. Martin, D.
Martin, and G. Bertrand, Angew. Chem. Int. Ed., 2013, 52, 2939 – 2943.
[11] L. Weber, Eur. J. Inorg. Chem., 2000, 2425 – 2441.
Synthesis of 2. Compound 1 (2 g, 7.3 mmol) was dissolved in toluene
(75 mL), and NHC added (2.2 mL, 14.6 mmol) via syringe. A yellow
precipitate immediately formed. The reaction mixture was then heated to
100 °C and kept at this temperature without stirring for 10 h, after which
time no solid was present and the solution had become an intense bright
orange colour. A 31P NMR analysis of this solution indicated that all of
compound 1 had been consumed. The reaction mixture was cooled to
room temperature, and all volatiles removed in vacuo. The oily orange
residue was washed multiple times with Et2O (4x20 mL) and hexane
(2x20 mL) to remove excess NHC and the by-product, NHC·H2, leaving
an analytically pure bright orange powder, 2 (2.52 g, 60 %). X-ray quality
crystals of 2 were obtained by slow-cooling of a hot, saturated solution of
[12] A. J. Arduengo, C. J. Carmalt, J. A. C. Clyburne, A. H. Cowley, and R.
Pyati, Chem. Commun., 1997, 981–982;
[13]
(a) A. Doddi, D. Bockfeld, T. Bannenberg, P. G. Jones, and M. Tamm,
Angew. Chem. Int. Ed., 2014, 53, 13568 – 13572; (b) A. Doddi, D.
Bockfeld, A. Nasr, T. Bannenberg, P. G. Jones, and M. Tamm, Chem.
Eur. J., 2015, 21,16178 – 16189; (c) D. Bockfeld, A. Doddi, P. G. Jones,
and M. Tamm, Eur. J. Inorg. Chem., 2016, 3704–3712; (d) C. M. E.
Graham, C. R. P. Millet, A. N. Price, J. Valjus, M. J. Cowley, H. M.
Tuononen, and P. J. Ragogna, Chem. Eur. J., 2018, 24, 672 – 680.
[14] H. Schneider, D. Schmidt, U. Radius, Chem. Commun., 2015, 51,
10138 – 10141
[15] For a recent review discussing these reactions and broader [PCO]
chemistry, see:
2
in either THF or
a
benzene/THF mixture, giving two different
1
3
polymorphs. H NMR (D8-THF, 200 MHz, 298 K): δ = 1.24 (d, JHH = 6.8
J. M. Goicoechea, and H. Grützmacher, Angew. Chem. Int. Ed., 2018,
57, 16968 – 16994.
3
Hz, 24H, NHC-iPr-CH3), 1.53 (s, 6H, Xant-(CH3)2), 4.99 (sept, JHH = 6.8
Hz, 4H, NHC-iPr-CH), 6.54 (m, 2H, Xant-Ar-H), 6.84 (m, 4H, Xant-Ar-H),
7.08 (s, 4H, NHC-(iPr)NCH); 13C{1H} NMR (D8-THF, 75.5 MHz, 298 K): δ
= 22.5 (NHC-Pri-CH3), 33.1 (NHC-Pri-CH), 35.1 (Xant-CH3), 50.0 and
50.1 (NHC-(iPr)NCH), 116.2, 119.5, 122.0, 128.9, and 130.7 (Xant-Ar-C);
31P NMR (D8-THF, 162 MHz, 298 K): δ = 77.2; HR MS (ESI): m/z =
575.3064 (calcd for [M+H]+: 575.3069).
[16] (a) L. Liu, D. A. Ruiz, D. Munz, and G. Bertrand, Chem, 2016, 1, 147–
153; (b) M. M. Hansmann, R. Jazzar, and G. Bertrand, J. Am. Chem.
Soc., 2016, 138, 8356 – 8359.
[17] (a) S. Hillebrand, J. Bruckmann, M. W. Haene, Tetrahedron Lett., 1995,
36, 75 – 78; (b) J. J. Bishop, A. Davison, M. L. Katcher, D. W.
Lichtenberg, R. E. Merrill, J. C. Smart, J. Organometal. Chem., 1971,
27, 241 – 249; (c) R. D. Jackson, S. James, A. G. Orpen, and P. G.
Pringle, J. Organometal. Chem., 1993, 458, C3-C4.
[18] (a) M.-N. Birkholz, Z. Freixa, and P. W. N. M. van Leeuwen, Chem. Soc.
Rev., 2009, 38, 1099 – 1118; (b) P. W. N. M. van Leeuwen, and P. C. J.
Kamer, Catal. Sci. Technol., 2018, 8, 26 – 113.
Acknowledgements
This work was funded by the DFG (German Research
Foundation) under Germany´s Excellence Strategy – EXC 2008
– 390540038 – UniSysCat and DR-226-17/3.
[19] P. Dierkes, S. Ramdeehul, L. Barloy, A. De Cian, J. Fischer, P. C. J.
Kamer, P. W. N. M van Leeuwen, and J. A. Osborn, Angew. Chem. Int.
Ed., 1998, 37, 3116 – 3118.
[20] M. Hirotsu, N. Ohno, T. Nakajima, C. Kushibe, K. Uenob, and I.
Kinoshita, Dalton Trans., 2010, 39, 139 – 148.
Keywords: phosphinidene • chelating ligand • catalysis •
[21] V. A. K. Adiraju, M. Yousufuddin, and H. V. R. Dias, Dalton Trans.,
2015, 44, 4449 – 4454.
bimetallic
[22] (a) C. Meyer, H. Grutzmacher, and H. Pritzkow, Angew. Chem. Int. Ed.
Engl., 1997, 36, 2471 – 2473; (b) J. Yuan, L. Zhu, J. Zhang, J. Li, and C.
Cui, Organometallics, 2017, 36, 455 − 459.
[1]
[2]
(a) The Chelate Effect; A. E. Martell, in Werner Centennial; American
Chemical Society, 1967; (b) J. J. R. Frausto da Silva, J. Chem.
Educ., 1983, 60, 390 - 392.
[23] L. Weber, J. Krümberg, H.-G. Stammler, and B. Neumann, Z. Anorg.
Allg. Chem., 2004, 630, 2478 – 2482.
[24] (a) Y. Xiong, S. Yao, S. Inoue, A. Berkefeld, and M. Driess, Chem.
Commun., 2012, 48, 12198 – 12200; (b) Y. Xiong, S. Yao, G. Tan, S.
Inoue, and M. Driess, J. Am. Chem. Soc., 2013, 135, 5004 – 5007; (c)
C. Gendy, A. Mansikkamäki, J. Valjus, J. Heidebrecht, P. C.-Y. Hui, G.
M. Bernard, H. M. Tuononen, R. E. Wasylishen, V. K. Michaelis, and R.
Roesler, Angew. Chem. Int. Ed., 2019, 58, 154 – 158; (d) J. Schröder,
and T. Böttcher, Eur. J. Inorg. Chem., 2020, 342–348.
(a) Phosphines: preparation, reactivity and applications; E. I. Musina, A.
S. Balueva and A. A. Karasik, in Organophosphorus Chemistry: Volume
48; Royal Society of Chemistry, 2019; (b) Homogeneous Catalysis with
Metal Phosphine Complexes, L. M. Pignolet; Springer US, 1983.
As ascertained by a survey of the CCDC.
[3]
[4]
(a) C. A. Laskowski, A. J. M. Miller, G. L. Hillhouse, and T. R. Cundari,
J. Am. Chem. Soc., 2011, 133, 771-773; (b) S. Imm, S. Bähn, M. Zhang,
L. Neubert, H. Neumann, F. Klasovsky, J. Pfeffer, T. Haas, and M.
Beller, Angew. Chem. Int. Ed., 2011, 50, 7599 –7603.
[25] F. Cheng, A. L. Hector, W. Levason, G. Reid, M. Webster, and W.
Zhang, Inorg. Chem., 2010, 49, 752 – 760.
[26] T. Schaub, M. Backes, and U. Radius, Organometallics, 2006, 25, 4196
– 4206.
[5]
[6]
(a) Y-P. Zhou, and M. Driess, Angew. Chem. Int. Ed., 2019, 58, 3715 –
3728; (b) A. Kostenko, and M. Driess, J. Am. Chem. Soc., 2018, 140,
16962−16966; (c) Y. Wang, A. Kostenko, S. Yao, and M. Driess, J. Am.
Chem. Soc., 2017, 139, 13499 − 13506; (d) Y. Wang, A. Kostenko, T. J.
Hadlington, M.-P. Luecke, S. Yao, and M. Driess, J. Am. Chem. Soc.,
2019, 141, 626−634.
H. Wang, L. Wu, Z. Lin, and Z. Xie, J. Am. Chem. Soc., 2017, 139,
13680 − 13683.
6
This article is protected by copyright. All rights reserved.