10.1002/anie.201904833
Angewandte Chemie International Edition
COMMUNICATION
23, 6531 - 6534; d) Y. Zhou, B. Breit, Chem. Eur. J. 2017, 23, 18156 -
18160; e) J. P. Schmidt, B. Breit Chem. Sci. 2019, 10, 3074 - 3079.
[11] For a recent review, see: A. Haydl, B. Breit, T. Liang, M. J. Krische,
Angew. Chem. 2017, 129, 11466 - 11480; Angew. Chem. Int. Ed. 2017,
56, 11312 - 11325.
Keywords: allenes • heterocycles • allylic products • asymmetric
catalysis • rhodium
[1]
a) J. P. Michael, The Alkaloids: Chemistry and Biology 2016, 75, 1 -
498; b) P. L. Katavic, D. A. Venables, G. P. Guymer, P. I. Forster, A. R.
Carroll, J. Nat. Prod. 2007, 70, 1946 - 1950; c) J. D. Firth, S. J. Canipa,
L. Ferris, P. O’Brien, Angew. Chem. 2018, 130, 229 - 232; Angew.
Chem. Int. Ed. 2018, 57, 223 - 226; d) T. Kino, H. Hatanaka, M.
Hashimoto, M. Nishiyama, T. Goto, M. Okuhara, M. Kohsaka, H. Aoki,
H. Imanaka, J. Antibiot. 1987, 40, 1249 - 1255.
[12] For the screening of different protecting groups and the free amine
under racemic conditions, see supporting information.
[13] For ligand screening, see supporting information.
[14] a) Q.-A. Chen, Z. Chen, V. M. Dong, J. Am. Chem. Soc. 2015, 137,
8392 - 8395; b) A. M. Haydl, L. J. Hilpert, B. Breit, Chem. Eur. J. 2016,
22, 6547 - 6551; c) D. Berthold, B. Breit, Org. Lett. 2018, 20, 598 - 601;
d) ) Z. Liu, B. Breit, Angew. Chem. 2016, 128, 8580 - 8583; Angew.
Chem. 2016, 55, 8440 - 8443; e) T. M. Beck, B. Breit, Eur. J. Org.
Chem. 2016, 93, 5839 - 5844; f) J. Kuang, S. Parveen, B. Breit, Angew.
Chem. 2017, 129, 8542 - 8545; Angew. Chem. Int. Ed. 2017, 56, 8422 -
8425.
[2]
For examples of asymmetric allylic substitution, see: Ru-catalyzed: K.
Miyata, H. Kutsuna, S. Kawakami, M. Kitamura, Angew. Chem. Int. Ed.
2011, 50, 4649
- 4653; Pd-catalyzed: a) L. E. Overman, T. P.
Remarchuk, J. Am. Chem. Soc. 2002, 124, 12 - 13; b) O. Hara, T.
Koshizawa, K. Makino, I. Kunimune, A. Nimini, Y. Hamada,
Tetrahedron 2007, 63, 6170 - 6181; c) B. Olzsewska, B. Kryczka, A.
Zawis, Tetrahedron 2013, 69, 9551 - 9556; Ir-catalyzed: a) C. Welter, O.
Koch, G. Lipowsky, G. Helmchen. Chem. Commun. 2004, 896 - 897; b)
C. Welter, A. Dahnz, B. Brunner, S. Streiff, P. Dübon, G. Helmchen,
Org. Lett. 2005, 7, 1239 - 1242; c) S. Spiess, C. Welter, G. Franck, J.-P.
Taquet, G. Helmchen, Angew. Chem. Int. Ed. 2008, 47, 7652; d) J. F.
Teichert, M. Fañanás-Mastral, B. L. Feringa, Angew. Chem. Int. Ed.
2011, 50, 688; e) M. A. Schafroth, S. M. Rummelt, D. Sarlah, E. M.
Carreira, Org. Lett. 2017, 19, 3235 - 3238.
[15] For reaction optimization, see supporting information.
[16] Hydroamination of 1,3-disubstituted internal allenes were not
successful under these reaction conditions, since the products were
only obtained in poor yield and enantioselectivity.
[17] Hydroamination of other internal alkynes were not successful under
these reaction conditions, since the products were only obtained in low
yield and enantioselectivity.
[18] G. D. Muñoz, G. B. Dudley, Org. Prep. Proced. Int. 2015, 47, 179 - 206.
[19] Intramolecular hydroamination of substrates leading either to 4- or 7-
membered heterocyles were not successful, except for the 7-
membered product 2r, which was obtained in 38% and 84% ee
applying the conditions for the piperidene cyclizations.
[3]
[4]
R. I. McDonald, P. B. White, A. B. Weinstein, C. P. Tam, S. S. Stahl,
Org. Lett. 2011, 13, 2830 - 2833.
a) Y. Kuroda, S. Harada, A. Oonishi, Y. Yamaoka, K. i. Yamada, K.
Takasu, Angew. Chem. 2015, 127, 8381 - 8384; Angew. Chem. Int. Ed.
2015, 54, 8263 - 8266; b) T. Azuma, A. Murata, Y. Kobayashi, T.
Inokuma, Y. Takemoto, Org. Lett. 2014, 16, 4256 - 4259.
[{Rh(cod)Cl}2] (2.0 mol%)
Ts
NHTs
O
L5 (5.0 mol%)
PPTS (10 mol%)
N
[5]
[6]
B. M. Trost, Science 1991, 254, 1471 - 1477.
a) M. Meguro, Y. Yamamoto, Tetrahedron Lett. 1998, 39, 5421 - 5424;
b) L. M. Luete, I. Kadota, Y. Yamamoto, J. Am. Chem. Soc. 2004, 126,
1622 - 1623; c) S. Qiu, Y. Wei, G. Liu, Chem. Eur. J. 2009, 15, 2751 -
2754.
•
DCE (0.2 M), 80 °C, 12 h
O
2r
38%, 84% ee
1r
[20] For deuterium labelling experiments, in-situ NMR-monitoring and
general mechanistic details, see supporting information.
[7]
For gold-catalyzed intramolecular hydroamination of special classes of
1,3-di- and tris-usbtituted allenes, see: a) Z. Zhang, C. Liu, R. E. Kinder,
X. Han, H. Qian, R. A. Widenhoefer J. Am. Chem. Soc. 2006, 128,
9066 - 9073; b) R. L. LaLonde, B. D. Sherry, E. J. Kang, F. D. Toste, J.
Am. Chem. Soc. 2007, 129, 2452 - 2453; c) Z. Zhang, C. F. Bender, R.
A. Widenhoefer, Org. Lett. 2007, 9, 2887 - 2889; d) Z. Zhang, C. F.
Bender, R. A. Widenhoefer, J. Am. Chem. Soc. 2007, 129, 14148 -
14149; e) G. L. Hamilton, E. J. Kang, M. Mba, F. D. Toste, Science
2007, 317, 496 - 499; f) R. L. LaLonde, Z. J. Wang, M. Mba, A. D.
Lackner, F. D. Toste Angew. Chem. Int. Ed. 2010, 49, 598 - 601; g) K.
Aikawa, M. Kojima, K. Mikami Angew. Chem. Int. Ed. 2010, 48, 6073 -
6077; h) L.-I. Rodríguez, T. Roth, J. L. Fillol, H. Wadepohl, L. H. Gade
Chem. Eur. J. 2012, 18, 3721 - 3728; i) J. H. Kim, S. W. Park, S. R.
Park, S. Y. Lee, E. J. Kang Chem. Asian J. 2011, 6, 1982 - 1986; j) C.
Michon, F. Medina, M.-A. Abadie, F. Agbossou-Niedercorn,
Organometallics 2013, 32, 5589.
[21] A. D. Brosins, L. E. Overman, L. Schwink, J. Am. Chem. Soc. 1999,
121, 700 - 709.
[22] a) C. Bhat, S. G. Tilve, Tetrahedron 2013, 69, 10876 - 10883; b) F.
Sánchez-Sancho, E. Mann, B. Herradón Synthesis 2001, 343, 360 -
368; c) R. Sugiyama, S. Nishimura, T. Ozaki, S. Asimazu, H. Onaka, H.
Kakeya, Angew. Chem. 2016, 128, 10434 - 10438; Angew. Chem. Int.
Ed. 2016, 55, 10278 - 10282; d) D. J. Hart, W.-L. Wu, A. P. Kozikowski,
J. Am. Chem. Soc. 1995, 117, 9369 - 9370.
[23] D. Fuchs, G. Rousseau, L. Diab, U. Gellrich, B. Breit, Angew. Chem.
2012, 124, 2220 - 2224; Angew. Chem. Int Ed. 2012, 51, 2178 - 2182.
In this work the ligand L6 was used:
H
N
HN
P(p-MeO-C6H4)2
N
H
H2N
O
L6
[8]
[9]
For Brønsted acid-catalyzed asymmetric hydroamination of internal
allenes and 1,3-dienes, see: a) J.-S. Lin, T.-T. Li, G.-Y. Jiao, Q.-S. Gu,
J.-T. Cheng, L. Lv, X.-Y. Liu Angew. Chem. 2019, 131, DOI:
10.1002/ange.201900955; Angew. Chem. Int. Ed. 2019, 58, DOI:
10.1002/anie.201900955; b) N. D. Shapiro, V. Rauniyar, G. L. Hamilton,
J. Wu, F. D. Toste Nature 2011, 470, 245 - 249.
[24] a) M. J. e Silva, L. Cottier, R. M. Srivastava, D. Sinou, A. Thozet;
Carbohydr. Res. 2005, 340, 309 - 314; b) M. J. e Silva, L. Cottier, R. M.
Srivastava, D. Sinou J. Braz. Chem. Soc. 2005, 16, 995 - 1000.
For a recent review, see: P. Koschker, B. Breit, Acc. Chem. Res. 2016,
49, 1524.
[10] For recent examples of C-N bond formation, see: a) P. A. Spreider, A.
M. Haydl, M. Heinrich, B. Breit, Angew. Chem. 2016, 128, 15798 -
15802; Angew. Chem. Int. Ed. 2016, 55, 15569 - 15573; b) N. Thieme,
B. Breit, Angew. Chem. 2017, 129, 1542 - 1546; Angew. Chem. Int. Ed.
2017, 56, 1520 - 1524; c) J. Schmidt, C. Li, B. Breit, Chem. Eur. J. 2017,
This article is protected by copyright. All rights reserved.