1971, 10, 496–497; (d) S. Danishefsky and P. Cain, J. Am. Chem. Soc.,
1976, 98, 4975–4983.
Rev., 2002, 31, 69–82; (d) D. Astruc and F. Chardac, Chem. Rev., 2001,
101, 2991–3023; (e) A. Didier, K. Heuze, S. Gatard, D. Mery, S. Nlate
and L. Plault, Adv. Synth. Catal., 2005, 347, 329–338; (f) J. C. Garcia-
Martinez, R. Lezutekong and R. M. Crooks, J. Am. Chem. Soc., 2005,
127, 5097–5103; (g) S. M. Lu and H. Alper, J. Am. Chem. Soc., 2005,
127, 14776–14784; (h) W.-J. Tang, N.-F. Yang, B. Yi, G.-J. Deng, Y.-Y.
Huang and Q.-H. Fan, Chem. Commun., 2004, 1378–1379; (i) C. O.
Liang, B. Helms, J. Craig and J. M. J. Frechet, Chem. Commun., 2003,
2524–2525; (j) P. Weyermann and F. Diederich, Helv. Chim. Acta, 2002,
85, 599–617; (k) L. Liu and R. Breslow, J. Am. Chem. Soc., 2003, 125,
12110–12111.
8 For peptide dendrimers: (a) L. Crespo, G. Sanclimens, M. Pons, E.
Giralt, M. Royo and F. Albericio, Chem. Rev., 2005, 1663–1681; (b) M. J.
Cloninger, Curr. Opin. Chem. Biol., 2002, 6, 742–748; (c) L. Crespo,
G. Sanclimens, B. Montaner, R. Pe´rez-Toma´s, M. Royo, M. Pons, F.
Albericio and E. Giralt, J. Am. Chem. Soc., 2002, 124, 8876–8863; (d) K.
Sadler and J. P. Tam, Rev. Mol. Biotechnol., 2002, 90, 195–229; (e) J. P.
Tam, Y.-A. Lu and J.-L. Yang, Eur. J. Biochem., 2002, 269, 923–932;
(f) N. Higashi, T. Koga and M. Niwa, ChemBioChem, 2002, 3, 448–
454; (g) U. Boas, S. H. M. Sontjens, K. J. Jensen, J. B. Christensen and
E. W. Meijer, ChemBioChem, 2002, 3, 433–439; (h) G. A. Kinberger, C.
Welbo and M. Goodman, J. Am. Chem. Soc., 2002, 124, 15162–15163;
(i) C.-H. Tung, S. Mueller and R. Weissleder, Bioorg. Med. Chem.,
2002, 10, 3609–3614; (j) N. Wimmer, R. J. Marano, P. S. Kearns, E. P.
Rakoczy and I. Toth, Bioorg. Med. Chem., 2002, 12, 2635–2637; (k) D.
Lagnoux, T. Darbre, M. L. Schmitz and J.-L. Reymond, Chem.–Eur. J.,
2005, 11, 3941–3950.
4 For selected direct organocatalytic aldol reactions see: (a) B. List, R. A.
Lerner and C. F. Barbas, III, J. Am. Chem. Soc., 2000, 122, 2395;
(b) A. B. Northrup and D. W. C. MacMillan, J. Am. Chem. Soc.,
2002, 124, 6798–6799; (c) A. Bøgevig, N. Kumaragurubaran and K. A.
Jørgensen, Chem. Commun., 2002, 6, 620–621; (d) J. Kofoed, J. Nielsen
and J.-L. Reymond, Bioorg. Med. Chem. Lett., 2003, 13, 2445–2447;
(e) P. Krattiger, R. Kovasy, J. D. Revell, S. Ivan and H. Wennemers,
Org. Lett., 2005, 7, 1101–1103; (f) D. Enders and C. Grondal, Angew.
Chem., Int. Ed., 2005, 44, 1210–1212; (g) P. Dziedzic, W. B. Zou, J.
Hafren and A. Co´rdova, Org. Biomol. Chem., 2006, 4, 38–40; (h) A. B.
Northrup and D. W. C. MacMillan, Science, 2004, 305, 1752–1755;
(i) N. Mase, Y. Nakai, N. Ohara, H. Yoda, K. Takabe, F. Tanaka
and C. F. Barbas, III, J. Am. Chem. Soc., 2006, 128, 734–735; (j) Y.
Hayashi, T. Sumiya, J. Takahashi, H. Gotoh, T. Urushima and M.
Shoji, Angew. Chem., Int. Ed., 2006, 45, 958–961; (k) Z. Tang, Z.-H.
Yang, L.-F. Cun, L.-Z. Gong, A.-Q. Mi and Y.-Z. Jiang, Org. Lett.,
2004, 6, 2285–2287; (l) I. Ibrahem, W. Zou, Y. Xu and A. Co´rdova,
Adv. Synth. Catal., 2006, 348, 211–222; (m) Z. Tang, F. Jiang, L.-T.
Yu, X. Cui, L.-Z. Gong, A.-Q. Mi, Jiang and Y.-Z. Wu, J. Am. Chem.
Soc., 2003, 125, 5262; (n) A. Co´rdova, W. Notz and C. F. Barbas, III,
Chem. Commun., 2002, 67, 3034; (o) F. Tanaka, R. Fuller and C. F.
Barbas, III, Biochemistry, 2005, 44, 7583–7592; (p) A. Hartikka and
P. I. Arvidsson, Eur. J. Org. Chem., 2005, 4287–4295; (q) A. Berkessel,
B. Koch and J. Lex, Adv. Synth. Catal., 2004, 346, 1141–1146; (r) H. J.
Martin and B. List, SYNLETT, 2003, 12, 1901–1902; (s) Z. Tang, Z.-H.
Yang, X.-H. Chen, L.-F. Cun, L.-F., A.-Q. Mi, Y.-Z. Jiang, Y.-Z. and
L.-Z. Gong, J. Am. Chem. Soc., 2005, 127, 9285–9289; (t) Z. Tang, F.
Jiang, X. Cui, L.-Z. Gong, A.-Q. Mi, Y.-Z. Jiang and Y.-D. Wu, Proc.
Natl. Acad. Sci. U. S. A., 2004, 101, 5755–5760; (u) For a recent short
review on asymmetric organocatalysis see: J. Seayad and B. List, Org.
Biomol. Chem., 2005, 3, 719–724.
5 For selected Zn-catalyzed direct aldol reactions see: (a) T. Darbre and
M. Machuqueiro, Chem. Commun., 2003, 9, 1090–1091; (b) J. Kofoed,
M. Machuqueiro, J.-L. Reymond and T. Darbre, Chem. Commun.,
2004, 13, 1540–1541; (c) J. Kofoed, J.-L. Reymond and T. Darbre,
Org. Biomol. Chem., 2005, 3, 1850–1855; (d) R. Fernandez-Lopez, R. J.
Kofoed, M. Machuqueiro and T. Darbre, Eur. J. Org. Chem., 2005,
24, 5268–5276; (e) Y. M. A. Yamada, N. Yoshikawa, H. Sasai and M.
Shibasaki, Angew. Chem., Int. Ed. Engl., 1997, 36, 1871–1873; (f) N.
Yoshikawa, Y. M. A. Yamada, J. Das, M. Sasai and H. Shibasaki, J. Am.
Chem. Soc., 1999, 121, 4168–4178; (g) N. Kumagai, S. Matsunaga, N.
Yoshikawa, T. Ohshima and M. Shibasaki, Org. Lett., 2001, 3, 1539–
1542; (h) B. M. Trost and H. Ito, J. Am. Chem. Soc., 2004, 122, 12003–
12004; (i) B. M. Trost, E. R. Silcoff and H. Ito, Org. Lett., 2001, 3,
2497–2500; (j) B. M. Trost, H. Ito and E. R. Silcoff, J. Am. Chem. Soc.,
2001, 123, 3367–3368; (k) B. M. Trost, S. Shin and J. A. Sclafani, J. Am.
Chem. Soc., 2005, 127, 8602–8603.
6 (a) G. R. Newkome, C. N. Moorefield and F. Vo¨gtle, Dendritic
Molecules: Concepts, Synthesis, Perspectives, VCH, Weinheim, 1996;
(b) G. R. Newkome, C. N. Moorefield and F. Vo¨gtle, Dendritic
Molecules: Concepts, Synthesis, Applications, VCH: Weinheim, 2001;
(c) Dendrimers V: Functional and Hyperbranched Building Blocks,
Photophysical Properties and Applications in Materials and Life Science
(Top. Curr. Chem., vol. 228), ed. F. Vo¨gtle and C. A. Schalley, Springer-
Verlag, Berlin, 2003; (d) Dendrimers IV: Metal Coordination, Self
Assembly and Catalysis (Top. Curr. Chem., vol. 217), ed. F. Vo¨gtle
and C. A. Schalley, Springer-Verlag, Berlin, 2001; (e) D. A. Tomalia and
P. R. Dvornic, Nature, 1994, 372, 617–618; (f) J. W. J. Knapen, A. W. van
der Made, J. C. de Wilde, P. W. N. M. van Leeuwen, P. Wijkens, D. M.
Grove and G. van Koten, Nature, 1994, 372, 659–662; (g) C. Liang and
J. M. Fre´chet, Prog. Polym. Sci., 2005, 30, 385–402; (h) D. K. Smith,
Tetrahedron, 2003, 59, 3797–3798; (i) S. M. Grayson and J. M. J. Fre´chet,
Chem. Rev., 2001, 101, 3819–3868; (j) F. Zeng and S. C. Zimmerman,
Chem. Rev., 1997, 97, 1681–1712; (k) M. Witvrouw, V. Fikkert, W.
Pluymers, B. Matthews, K. Mardel, D. Schols, J. Raff, Z. Debyser, E.
DeClercq, G. Holan and C. Pannecouque, Mol. Pharmacol., 2000, 58,
1100–1108.
9 (a) A. Esposito, E. Delort, D. Lagnoux, F. Djojo and J.-L. Reymond,
Angew. Chem., Int. Ed., 2003, 42, 1381–1383; (b) D. Lagnoux, E.
Delort, C. Douat-Casassus, A. Esposito and J. L. Reymond, Chem.–
Eur. J., 2004, 10, 1215–1226; (c) C. Douat-Casassus, T. Darbre and J.-L.
Reymond, J. Am. Chem. Soc., 2004, 126, 7817–7826; (d) E. Delort, T.
Darbre and J.-L. Reymond, J. Am. Chem. Soc., 2004, 126, 15642–15643;
(e) A. Clouet, T. Darbre and J.-L. Reymond, Adv. Synth. Catal., 2004,
346, 1195–1204.
10 E. Bellis and G. Kokotos, J. Mol. Catal. A: Chem., 2005, 241, 166–174.
11 (a) A. Furka, A., F. Sebestye´n, M. Asgedom and G. Dibo´, Int. J. Pept.
Protein Res., 1991, 37, 487–493; (b) K. S. Lam, S. E. Salmon, E. M.
Hersh, V. J. Hruby, W. M. Kazmierski and R. J. Knapp, Nature, 1991,
354, 82–84; (c) R. A. Houghten, C. Pinilla, C., S. E. Blondelle, J. R.
Appel, C. T. Dooley and J. H. Cuervo, Nature, 1991, 354, 84–86;(d) K. S.
Lam, M. Lebl and V. Krchnak, Chem. Rev., 1997, 97, 411–448.
12 (a) A. Clouet, T. Darbre and J.-L. Reymond, Angew. Chem., Int. Ed.,
2004, 43, 4612–4615; (b) A. Clouet, T. Darbre and J.-L. Reymond,
Biopolymers, 2006, 84, 114–123.
13 18.75% of the library contains 1 lysine at A1, 18.75% 2 lysines at
position A3, and 6.25% three lysine residues at position A1 and A3,
giving a total of 43.75% of the library containing at least one lysine
residue.
14 J. Kofoed, T. Darbre and J.-L. Reymond, Chem. Commun., 2006, 1482–
1484.
15 (a) N. Jourdain, R. Pe´rez Carlo´n and J.-L. Reymond, Tetrahedron Lett.,
1998, 39, 9415–8; (b) R. Pe´rez Carlo´n, N. Jourdain and J.-L. Reymond,
Chem.–Eur. J., 2000, 6, 4154–4162; (c) E. M. Gonzalez-Garcia, V.
Helaine, G. Klein, M. Schuermann, G. Sprenger, W.-D. Fessner and
J.-L. Reymond, Chem.–Eur. J., 2003, 9, 893.
16 (a) B. List, C. F. Barbas and R. A. Lerner, Proc. Natl. Acad. Sci. U. S. A.,
1998, 95, 15351; (b) L. Hoang, S. Bahmanyar, K. N. Houk and B. List,
J. Am. Chem. Soc., 2003, 125, 16–17.
17 (a) J. P. Guthrie, J. Am. Chem. Soc., 1991, 113, 7249; (b) J. P. Guthrie,
Can. J. Chem., 1978, 56, 962.
18 Each bead has a diameter of 100 lm and weighs approximately 1 lg,
corresponding to 200 pmol per bead at 0.2 mmol g−1
.
19 Any sequence has a probability of (65 535/65 536)62 500 = 38.5% of never
being picked in the sample of 50 mg containing 62 500 beads picked
from a large excess (1.25 million beads per g) of library.
20 The reaction cannot be run in organic solvent due to the insolubility of
dihydroxyacetone.
21 (a) J. D. Bass, A. Solovyov, A. J. Pascall and A. Katz, J. Am. Chem.
Soc., 2006, 128, 3737–3747; (b) S. Saito and H. Yamamoto, Acc. Chem.
Res., 2004, 37, 570–579; (c) J. Hine and Y. Chou, J. Org. Chem., 1981,
46, 649–652.
7 For catalytic dendrimers: (a) J. Kofoed and J.-L. Reymond, Curr. Opin.
Chem. Biol., 2005, 9, 656–664; (b) R. Kreiter, A. W. Kleij, R. J. M.
Klein Gebbink and G. van Koten, Top. Curr. Chem., 2001, 217, 163–
199; (c) L. J. Twyman, A. S. H. M. King and I. K. Martin, Chem. Soc.
22 S. S. Yoon and W. C. Still, Tetrahedron, 1995, 51, 567–578.
This journal is
The Royal Society of Chemistry 2006
Org. Biomol. Chem., 2006, 4, 3268–3281 | 3281
©