Organic Letters
Letter
(b) Zimmer, L. E.; Sparr, C.; Gilmour, R. Fluorine conformational
effects in organocatalysis: an emerging strategy for molecular design.
Angew. Chem., Int. Ed. 2011, 50, 11860−11871.
solubility were observed at pH 4.7 (925 vs 563 μM). Both
compounds were found to be stable in the presence of human
microsomes [Clint (μM/min/mg <4.5), and similar low intrinsic
clearance rates in rat hepatocytes were observed. As expected,
the fluorinated systems displayed physicochemical profiles very
different than that of the parent drug Gilenya,8 further
underscoring the potential of multiply fluorinated motifs in
functional small molecule design.15
In conclusion, a stereodivergent route to four diaster-
eoisomers of the 1,2,3,4-tetrafluoro motif is disclosed from an
inexpensive, chiral pool starting material. Whereas the
configuration of the penultimate C(sp3)−F unit is predeter-
mined by the sugar, the adjoining, contiguous centers can be
programmed to facilitate access to four discrete diaster-
eoisomers. Solid-state structural analysis reveals a predisposition
to adopt conformations that allow for stabilizing hyper-
conjugative interactions of the type (σC−H/C → σC−F*). These
sequential gauche effects give rise to subtle changes in structural
topology and physicochemical properties. Given the biosisos-
teric nature of C(sp3)−H and C(sp3)−F bonds, multivicinal
fluoroalkanes are a versatile class of materials to explore 3D
chemical space.
(3) (a) Thiehoff, C.; Rey, Y. P.; Gilmour, R. The fluorine gauche effect:
a brief history. Isr. J. Chem. 2017, 57, 92−100. (b) Aufiero, M.; Gilmour,
R. Informing molecular design by stereoelectronic theory: the fluorine
gauche effect in catalysis. Acc. Chem. Res. 2018, 51, 1701−1710.
(4) (a) O'Hagan, D.; Rzepa, H. S; Schuler, M.; Slawin, A. M Z The
vicinal difluoro motif: The synthesis and conformation of erythro- and
threo- diastereoisomers of 1,2-difluorodiphenylethanes, 2,3-difluoro-
succinic acids and their derivatives. Beilstein J. Org. Chem. 2006, 2, 19.
(b) Hunter, L.; Jolliffe, K. A.; Jordan, M. J. T.; Jensen, P.; Macquart, R.
B. Synthesis and Conformational Analysis of α,β-Difluoro-γ-amino
Acid Derivatives. Chem. - Eur. J. 2011, 17, 2340−2343. (c) Scheidt, F.;
Selter, P.; Santschi, N.; Holland, M. C.; Dudenko, D. V.; Daniliuc, C.;
Muck-Lichtenfeld, C.; Hansen, M. R.; Gilmour, R. Emulating natural
̈
product conformation by cooperative, non-covalent fluorine inter-
actions. Chem. - Eur. J. 2017, 23, 6142−6149.
(5) (a) Nicoletti, M.; O’Hagan, D.; Slawin, A. M. Z. α,β,γ-
Trifluoroalkanes: A Stereoselective Synthesis Placing Three Vicinal
Fluorines along a Hydrocarbon Chain. J. Am. Chem. Soc. 2005, 127,
482−483. (b) Schuler, M.; O’Hagan, D.; Slawin, A. M. Z. The vicinal
̈
F−C−C−F moiety as a tool for influencing peptide conformation.
Chem. Commun. 2005, 4324−4326. (c) Hunter, L.; O’Hagan, D.;
Slawin, A. M. Z. Enantioselective Synthesis of an All-syn Four Vicinal
Fluorine Motif. J. Am. Chem. Soc. 2006, 128, 16422−16423.
(d) Nicoletti, M.; Bremer, M.; Kirsch, P.; O’Hagan, D. Liquid crystals
carrying stereodefined vicinal difluoro- and trifluoro- alkyl motifs.
Chem. Commun. 2007, 5075−5077. (e) Hunter, L.; Slawin, A. M. Z.;
Kirsch, P.; O’Hagan, D. Synthesis and Structure of Stereoisomeric
Multivicinal Hexafluoroalkanes. Angew. Chem., Int. Ed. 2007, 46, 7887−
7890. (f) Hunter, L.; Kirsch, P.; Hamilton, J. T. G.; O’Hagan, D. The
multi-vicinal fluoroalkane motif: an examination of 2,3,4,5-tetrafluor-
ohexane stereoisomers. Org. Biomol. Chem. 2008, 6, 3105−3108.
(g) Farran, D.; Slawin, A. M. Z.; Kirsch, P.; O’Hagan, D.
Diastereoselective Synthesis of 2,3,4,5,6-Pentafluoroheptanes. J. Org.
Chem. 2009, 74, 7168−7171. (h) Keddie, N. S.; Slawin, A. M.; Lebl, T.;
Philp, D.; O’Hagan, D. All-cis 1,2,3,4,5,6-hexafluorocyclohexane is a
facially polarized cyclohexane. Nat. Chem. 2015, 7, 483−488.
(i) Santschi, N.; Gilmour, R. A Janus Cyclohexane Ring. Nat. Chem.
2015, 7, 467−468.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures and characterization data
Accession Codes
graphic data for this paper. These data can be obtained free of
bridge Crystallographic Data Centre, 12 Union Road, Cam-
bridge CB2 1EZ, UK; fax: +44 1223 336033.
(6) Fischer, S.; Huwyler, N.; Wolfrum, S.; Carreira, E. M. Total
Synthesis of Bromo- and Fluorodanicalipin A. Angew. Chem., Int. Ed.
2016, 55, 2555−2558.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(7) (a) Huchet, Q. A.; Kuhn, B.; Wagner, B.; Kratochwil, N. A.;
Fischer, H.; Kansy, M.; Zimmerli, D.; Carreira, E. M.; Muller, K.
̈
Fluorination Patterning: A Study of Structural Motifs That Impact
Physicochemical Properties of Relevance to Drug Discovery. J. Med.
Chem. 2015, 58, 9041−9060. (b) Meanwell, N. A. Fluorine and
Fluorinated Motifs in the Design and Application of Bioisosteres for
Drug Design. J. Med. Chem. 2018, 61, 5822−5880.
Notes
(8) Erdeljac, N.; Kehr, G.; Ahlqvist, M.; Knerr, L.; Gilmour, R.
Exploring Physicochemical Space via a Bioisostere of the Trifluor-
omethyl and Ethyl Groups (BITE): Attenuating Lipophilicity in
Fluorinated Analogues of Gilenya® for Multiple Sclerosis. Chem.
Commun. 2018, 54, 12002−12005.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We acknowledge generous financial support from the WWU
nster, the Deutsche Forschungsgemeinschaft (SFB 858), and
the European Commission (RG, ERC Consolidator Grant,
818949 RECON ERC-2018-CoG).
■
́
(9) (a) Molnar, I. G.; Gilmour, R. Catalytic Difluorination of Olefins.
Mu
̈
́
J. Am. Chem. Soc. 2016, 138, 5004−5007. (b) Molnar, I. G.; Thiehoff,
C.; Holland, M. C.; Gilmour, R. Catalytic, Vicinal Difluorination of
Olefins: Creating a Hybrid, Chiral Bioisostere of the Trifluoromethyl
and Ethyl Groups. ACS Catal. 2016, 6, 7167−7173. (c) Scheidt, F.;
REFERENCES
̈
Schafer, M.; Sarie, J. C.; Daniliuc, C. G.; Molloy, J. J.; Gilmour, R.
■
Enantioselective, Catalytic Vicinal Difluorination of Alkenes. Angew.
(1) (a) Hunter, L.; O'Hagan, D. Multivicinal fluoroalkanes: a new
class of organofluorine compounds. Org. Biomol. Chem. 2008, 6, 2843−
2848. (b) O’Hagan, D. Organofluorine Chemistry: Synthesis and
Characterisation of Vicinal Fluoromethylene Motifs. J. Org. Chem.
2012, 77, 3689−3699.
(2) (a) O’Hagan, D. Understanding organofluorine chemistry. An
introduction to the C-F bond. Chem. Soc. Rev. 2008, 37, 308−319.
Chem., Int. Ed. 2018, 57, 16431−16435.
(10) (a) Banik, S. M.; Medley, J. W.; Jacobsen, E. N. Catalytic,
Diastereoselective 1,2-Difluorination of Alkenes. J. Am. Chem. Soc.
2016, 138, 5000−5003. (b) Haj, M. K.; Banik, S. M.; Jacobsen, E. N.
Catalytic, Enantioselective 1,2-Difluorination of Cinnamamides. Org.
Lett. 2019, 21, 4919−4923.
D
Org. Lett. XXXX, XXX, XXX−XXX