Organic Letters
Letter
Experimental procedures, spectral data of compounds,
and 1H and 13C NMR spectra (PDF)
Table 2. Hydrogenolysis of 19
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
a
The authors declare no competing financial interest.
entry
BnNH2·HCl (equiv)
time (h) yield (%)
ratio (2/20/21)
1
2
3
4
5
6
3
3
77
78
73
70
85
85
48:20:32
85:15:<1
95:05:<1
97:03:<1
95:05:<1
95:05:<1
ACKNOWLEDGMENTS
■
1.2
3.0
b
b
We are grateful for financial support to The Kurata Memorial
Hitachi Science and Technology Foundation, The Naito
Foundation, and The Sumitomo Foundation.
3
5.0
3
5.0
12
12
10.0
REFERENCES
a
b
1
■
Determined by 400 MHz H NMR. Partially remaining BnOCH2O
group was observed by H NMR.
1
(1) (a) Barratt, D. H. P. Plant Sci. Lett. 1980, 18, 249. (b) Unno, H.;
Uchida, T.; Sugawara, H.; Kurisu, G.; Sugiyama, T.; Yamaya, T.;
Sakakibara, H.; Hase, T.; Kusunoki, M. J. Biol. Chem. 2006, 281, 29287.
(2) Forde, B. G.; Lea, P. J. J. Exp. Bot. 2007, 58, 2339.
(3) Stewart, W. W. Nature (London, U. K.) 1971, 229, 174.
the benzyloxymethyl group, azide, and benzyl ester was
examined (Table 2).
(4) (a) Taylor, P. A.; Schnoes, H. K.; Durbin, R. D. Biochim. Biophys.
Acta, Gen. Subj. 1972, 286, 107. (b) Durbin, R. D.; Uchytil, T. F.; Steele,
J. A.; Ribeiro, R. L. D. Phytochemistry 1978, 17, 147. (c) Uchytil, T. F.;
Durbin, R. D. Experientia 1980, 36, 301. (d) Thomas, M. D.; Langston-
Unkefer, P. J.; Uchytil, T. F.; Durbin, R. D. Plant Physiol. 1983, 71, 912.
(5) (a) Baldwin, J. E.; Otsuka, M.; Wallace, P. M. J. Chem. Soc., Chem.
Commun. 1985, 1549. (b) Baldwin, J. E.; Otsuka, M.; Wallace, P. M.
Tetrahedron 1986, 42, 3097. (c) Dolle, R. E.; Li, C. S.; Novelli, R.;
Kruse, L. I.; Eggleston, D. J. Org. Chem. 1992, 57, 128. (d) Kiyota, H.;
Takai, T.; Saitoh, M.; Nakayama, O.; Oritani, T.; Kuwahara, S.
Tetrahedron Lett. 2004, 45, 8191. (e) Kiyota, H. Top Heterocycl. Chem.
2006, 6, 181. (f) Kiyota, H.; Takai, T.; Shimasaki, Y.; Saitoh, M.;
Nakayama, O.; Takada, T.; Kuwahara, S. Synthesis 2007, 2007, 2471.
(6) Sagawa, N.; Sato, H.; Hosokawa, S. Org. Lett. 2017, 19, 198.
(7) (a) Shirokawa, S.; Kamiyama, M.; Nakamura, T.; Okada, M.;
Nakazaki, A.; Hosokawa, S.; Kobayashi, S. J. Am. Chem. Soc. 2004, 126,
13604. (b) Nakamura, T.; Shirokawa, S.; Hosokawa, S.; Nakazaki, A.;
Kobayashi, S. Org. Lett. 2006, 8, 677.
Hydrogenolysis using Pd/C in methanol proceeded
smoothly; however, N-methylated byproducts 20 and 21 were
produced (Table 2, entry 1). Under these conditions, the
resulting amine underwent the reductive alkylation with
formaldehyde, which was generated by hydrogenolysis of the
benzyloxymethyl ether. After examination of several reaction
conditions, benzylammonium chloride (BnNH2·HCl) was
found to be effective in suppressing N-methylation of the
resulting amine (entries 2 and 3). Although BnNH2·HCl reacted
with formaldehyde to prevent N-methylation, the yield of 2
decreased because the hydrogenolysis slowed and a part of
benzyloxymethyl group remained (entries 3 and 4). The
problem was solved by extending the reaction time, and the
desired 2 was obtained in good yield (entry 5). Employing large
excess amount (10 equiv) of BnNH2·HCl did not change the
yield or ratio (entry 6). Spectral data of 2 were identical with
those of TβL reported in literature.5f Therefore, we accom-
plished to establish an efficient route to synthesize tabtoxinine-
β-lactam (2) in a stereoselective manner.
In conclusion, a stereoselective synthesis of tabtoxinine-β-
lactam (2) has been accomplished. The vinylogous Mukaiyama
aldol reaction with vinylketene silyl N,O-acetal 3 and α-keto-β-
lactam 6 proceeded to afford the adduct possessing TβL-
skeleton with a tert-alcohol in high yield and stereoselectivity.
The subsequent manipulation including the stereoselective
azidation and the simultaneous hydrogenolysis of the azide, the
benzyl ester, and the benzyloxymethyl moieties gave TβL.
Addition of benzylammonium chloride in the hydrogenolysis
suppressed the formation of N-methylated products. This
procedure is a straightforward method to the potent inhibitor
of glutamine synthetase possessing α-hydroxy-β-lactam and α-
amino acid moieties.
(8) (a) Behrens, C.; Paquette, L. A. Org. Synth. 1998, 75, 106.
(b) Paquette, L. A.; Brand, S.; Behrens, C. J. Org. Chem. 1999, 64, 2010.
(9) α-Keto-β-lactam 6 underwent hydration easily to afford α,α-
dihydroxy-β-lactam. Therefore, a solution of 6 in CH2Cl2 was dried
over molecular sieves 4A at room temperature for 4 h before use.
(10) Without treatment as described in ref 9, the yield of 16 decreased
to 83% under the conditions of entry 4 in Table 1.
(11) Evans, D. A.; Britton, T. C.; Ellman, J. A.; Dorow, R. L. J. Am.
Chem. Soc. 1990, 112, 4011.
(12) (a) Seebach, D.; Hungerbuhler, E.; Naef, R.; Schnurrenberger,
̈
P.; Weidmann, B.; Zuger, M. Synthesis 1982, 1982, 138. (b) Evans, D.
̈
A.; Ellman, J. A.; Dorow, R. L. Tetrahedron Lett. 1987, 28, 1123.
(13) The absolute configuration of azide 19 was confirmed by the
(a) Kusumi, T.; Fukushima, T.; Ohtani, I.; Kakisawa, H. Tetrahedron
Lett. 1991, 32, 2939. (b) Seco, J. M.; Quinoa,
2004, 104, 17.
́
E.; Riguera, R. Chem. Rev.
̃
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
X-ray data for compound 15 (CIF)
C
Org. Lett. XXXX, XXX, XXX−XXX