‡ The crystal structure determination† reveals that there are two independ-
ent, but very similar, half-molecules per asymmetric unit. For simplicity, we
will discuss here only the molecule denoted by A.
each [Li(1,2)O2] unit are chemically different. Thus the internal
Li atoms [Li(2), Li(2A)] have tetrahedral coordination, being
bonded to the O atoms [O(5), O(5A)] of the two bridging water
ligands, while the external Li atoms [Li(1), Li(1A)] interact with
two terminal acetone molecules [Li(1)–O(3),(4) 1.981(10),
1.997(10) Å]. Both the distortion from tetrahedral geometry at
the Li centres and the Li–O bond lengths are in good agreement
with those observed in other Li compounds containing similar
LiO4 tetrahedral coordination environments.10–12 On the other
hand, it is also remarkable that although a variety of metal
coordination modes have been observed for diorgano-
phosphinite ligands,9a,12b,13 to our knowledge, complex 2 is the
1 R. Nast, Coord. Chem. Rev., 1982, 47, 89.
2 (a) Inorganic Materials, ed. D. W. Bruce and D. O’Hare, Wiley, 2nd
edn., 1996, p. 460; (b) W. Beck, B. Niemer and M. Weiser, Angew.
Chem., Int. Ed. Engl., 1993, 32, 923; (c) N. J. Long, Angew. Chem., Int.,
Ed. Engl., 1995, 34, 21; (d) R. Faust, F. Diederich, V. Gramlich and P.
Seiler, Chem. Eur. J., 1995, 1, 111; (e) A. Harriman, M. Hissler, R.
Ziessel, A. D. Cian and J. Fisher, J. Chem. Soc., Dalton Trans., 1995,
4067 and references therein.
3 (a) J. Manna, K. D. John and M. D. Hopkins, Adv. Organomet. Chem.,
1995, 38, 79; (b) M. I. Bruce, M. Ke and P. J. Low, Chem. Commun.,
1996, 2405; (c) J. Manna, J. A. Whiteford and P. J. Stang, J. Am. Chem.
Soc., 1996, 118, 8731.
4 (a) J. Fornie´s and E. Lalinde, J. Chem. Soc., Dalton Trans., 1996, 2587;
(b) I. Ara, J. R. Berenguer, J. Fornie´s, E. Lalinde and M. T. Moreno,
Organometallics, 1996, 15, 1820; (c) R. J. Cross and M. F. Davidson,
J. Chem. Soc., Dalton Trans., 1986, 1987; (d) S. Tanaka, T. Yoshida, T.
Adachi, T. Yoshida, K. Onitsuka and K. Sonogashira, Chem. Lett.,
1994, 877; (e) S. L. James, G. Verspui, A. L. Spek and G. van Koten,
Chem. Commun., 1996, 1309.
3
first example in which this ligand acts with a m3-k :P,O,OA
bonding mode, bridging two hard Li atoms (m-O) and also being
P-bonded to a soft Pt centre. The P–O bond distances in 2
[1.537(4), 1.539(4) Å] are comparable to those observed for
structurally characterised [PPh2–O]2 complexes displaying a
m-O,m-P metal bridging mode.13 The square-planar coordina-
tion at Pt is unexceptional, exhibiting, as expected, essentially
linear acetylenic fragments (see Fig. 1).
In accord with the solid structure, the IR spectrum of 2 shows,
in addition to a medium n(C·C) band at 2092 cm21, the
presence of water (3646, 3402, 1611 cm21) and typical
absorptions for n(PNO) (996, 1006, 1030 cm21), characteristic
of phosphinito-bridged complexes.13 In the 31P NMR spectrum
5 J. R. Berenguer, J. Fornie´s, F. Mart´ınez, J. C. Cubero, E. Lalinde, M. T.
Moreno and A. J. Welch, Polyhedron, 1993, 12, 1797.
6 [Pt2(C·CPh)4(PEt3)2(Bun)2(m-Li)2]: A. Sebald, B. Wrackmeyer, Ch. R.
Theocharis and W. Jones, J. Chem. Soc., Dalton Trans., 1984, 747.
7 M. G. Walawalkar, R. Murugaval, A. Voigt, H. W. Roesky and H. G.
Schmidt, J. Am. Chem. Soc., 1997, 119, 4656.
8 P. Espinet, J. Fornie´s, F. Mart´ınez, M. Toma´s, E. Lalinde, M. T.
Moreno, A. Ruiz and A. J. Welch, J. Chem. Soc., Dalton Trans., 1990,
791.
9 The formation of phosphinito complexes starting from PPh2H has been
previously observed: J. Vicente, M. T. Chicote and P. G. Jones, Inorg.
Chem., 1993, 32 4960.
10 M. A. Beswick and D. S. Wright, Comprehensive Organometallic
Chemistry II, ed. E. W. Abel, F. G. A. Stone and G. Wilkinson, Elsevier,
1995, vol. 1, pp. 1–34; E. Weiss, Angew. Chem., Int. Ed. Engl., 1993, 32,
1501; K. Gregory, P. v. R. Schleyer and R. Snaith, Adv. Inorg. Chem.,
1994, 37, 47; D. Seebach, Angew. Chem., Int. Ed. Engl., 1988, 27,
1624.
1
a singlet shifted far downfield (d 67.37, JPtP 2510 Hz) is
observed,indicative of P oxidation to PV.13 The 1H NMR
spectrum of 2 in CD3COCD3 exhibits a singlet at d 0.46 due to
equivalent alkynyl groups (C2But); however, the difficulty in
assigning OH bands, even after addition of D2O, does not allow
us to determine with certainty whether the H2O molecules
remain coordinated in solution.
The Li-ionic conductivity of the Li derivative 2 has also been
measured using the well known complex impedance method,14
but it is near zero. This fact is in agreement with previous results
obtained for other tetrahedral LiO4 derivatives.15
We thank the Direccio´n General de Ensen˜anza Superior
(Spain, Projects PB95-0003C02-01 02 and PB95-0792) and the
University of LaRioja (API-97/B13) for financial support.
11 R. E. Mulvey, Chem. Soc. Rev., 1991, 20, 167.
12 (a) Lithium Chemistry—A Theoretical and Experimental Overview, ed.
A.-M. Sapse and P. v. R. Schleyer, Wiley, New York, 1995, ch. 9 and
references therein; (b) M. A. Beswick, N. L. Cromhout, C. N. Harmer,
J. S. Palmer, P. R. Raithby, A. Steiner, K. L. Verhorevoort and D. S.
Wright, Chem. Commun., 1997, 583.
Footnotes and References
13 Homonuclear examples, see: D. E. Fogg, N. J. Taylor, A. Meyer and
A. J. Carty, Organometallics, 1987, 6 2252; N. W. Alcock, P.
Bergamini, T. M. Gomes-Carniero, R. D. Jackson, J. Nicholls, A. G.
Orpen, P. G. Pringle, S. Sostero and O. Traverso, J. Chem. Soc., Chem.
Commun., 1990, 980; V. Riera, M. A. Ruiz, F. Villafane, C. Bois and Y.
Jeannin, Organometallics, 1993, 12, 124. Heteronuclear examples, see:
P. M. Veitch, J. R. Allen, A. J. Blake and M. Schroder, J. Chem. Soc.,
Dalton Trans., 1987, 2853; D. M. Roundhill, R. P. Sperline and W. B.
Beaulieu, Coord. Chem. Rev., 1978, 26, 263.
14 B. V. R. Chowdari, K. Radhakrishnan, K. A. Thomas and G. V. Subba
Rao, Mater. Res. Bull., 1989, 24, 221.
15 H. Aono, N. Imanaka and G.-Y. Adachi, Acc. Chem. Res., 1994, 27,
265.
* E-mail: juan.fornies@posta.unizar.es
† Crystal data for 2·0.5Me2CO: C43.50H53Li2O5.50Pt, M = 934.77, triclinic,
space group P1 (no. 2), a = 13.858(3), b = 13.858(3), c = 24.693(7) Å, a
= 83.79(3), b = 87.53(2), g = 65.02(2)°, U = 4590(2) Å3, Z = 2, T = 173
K, m = 3.166 mm21, graphite monochromated Mo-Ka radiation, l =
0.71073 Å, colourless prism with dimensions 0.56 3 0.46 3 0.30 mm,
Siemens AED2/STOE diffractometer with Oxford Cryogenics low-tem-
perature attachement, w–q scans, data collection range 4 < 2q < 48°,
semiempirical absorption correction based on y scans, transmission factors
0.889–0.577, 1001 refined parameters with 13628 unique (Rint = 0.026)
reflections (15 247 measured). Full-matrix least-squares refinement of this
model against F2 (program SHELXL 9316) converged to final residual
indices R1 = 0.033, wR2 = 0.070. (R factors defined in ref. 16), GOF 1.05.
Final difference electron density maps showed four peaks > 1 e Å23 (1.98,
1.43, 1.31, 1.03; largest diff. hole 21.21) lying closer than 1.12 Å from the
Pt atoms. CCDC 182/698.
16 G. M. Sheldrick, SHELXL-93, a Program for Crystal Structure
Refinement, University of Go¨ttingen, Germany, 1993.
Received in Basel, Switzerland, 30th July 1997; 7/05522F
142
Chem. Commun., 1998