Communication
ChemComm
N. L. Frye and R. R. Knowles, J. Am. Chem. Soc., 2019, 141, 1457.
For a review of water splitting, which is one of the most studied
light-driven uphill reactions, see: (k) A. J. Bard and M. A. Fox, Acc. Chem.
namely endothermic reactions, we anticipate that design of
light-driven uphill reactions focusing on the entropic cost will
open up a distinctive reaction space in photoreaction chemistry.
This method has several synthetic advantages, such as high
selectivity and scalability, as well as high atom economy.
Furthermore, the reaction enables a novel synthetic route to
access functional enamines from easily available substrates.
This work was supported by a Grant-in-Aid for Young
Scientists B (15K17854) and Early-Career Scientists (18K14215)
from JSPS. This work was also supported in part by the Asahi
Glass Foundation and Grant for Basic Science Research Project
from The Sumitomo Foundation. Elemental analyses and mass
spectrometry were provided by the JURC at ICR, Kyoto University.
¨
Res., 1995, 28, 141. For deracemization of chiral allenes, see: (l) A. Holzl-
Hobmeier, A. Bauer, A. V. Silva, S. M. Huber, C. Bannwarth and T. Bach,
Nature, 2018, 564, 240.
3 Hydroamination to olefins is a representative example, the thermo-
dynamics of which has been well-studied: (a) T. E. Mu¨ller and
M. Beller, Chem. Rev., 1998, 98, 675; (b) M. Beller, C. Breindl,
M. Eichberger, C. G. Hartung, J. Seayad, O. R. Thiel, A. Tillack and
H. Trauthwein, Synlett, 2002, 1579; (c) K. C. Hultzsch, Adv. Synth.
Catal., 2005, 347, 367; (d) A. M. Johns, N. Sakai, A. Ridder and
J. F. Hartwig, J. Am. Chem. Soc., 2006, 128, 9306.
4 For examples of synthetic applications of Norrish-Yang-type reactions,
see: (a) T. Bach and J. P. Hehn, Angew. Chem., Int. Ed., 2011, 50, 1000;
(b) N. Ishida, Y. Shimamoto and M. Murakami, Angew. Chem., Int. Ed.,
2012, 51, 11750.
5 Notably, these reports have no thermodynamic information.
(a) C. Wang, J. Qin, X. Shen, R. Riedel, K. Harms and E. Meggers,
Angew. Chem., Int. Ed., 2016, 55, 685; (b) W. Ding, L.-Q. Lu, J. Liu,
D. Liu, H.-T. Song and W.-J. Xiao, J. Org. Chem., 2016, 81, 7237;
(c) Q. Xia, H. Tian, J. Dong, Y. Qu, L. Li, H. Song, Y. Liu and Q. Wang,
Chem. – Eur. J., 2018, 24, 9269; (d) E. Fava, A. Millet, M. Nakajima,
S. Loescher and M. Rueping, Angew. Chem., Int. Ed., 2016, 55, 6776.
6 (a) R. S. Davidson, Chem. Commun., 1966, 575; (b) S. G. Cohen and
H. M. Chao, J. Am. Chem. Soc., 1968, 90, 165; (c) S. G. Cohen and
B. Green, J. Am. Chem. Soc., 1969, 91, 6824.
7 When we performed periodic on–off switching of the light, the
reaction proceeded only when the light was on, indicating that light
irradiation is required for this reaction. For details, see the ESI†.
8 (a) M. Mammen, E. I. Shakhnovich, J. M. Deutch and G. M.
Whitesides, J. Org. Chem., 1998, 63, 3821; (b) In hydroamination,
the thermodynamic parameters obtained by DFT calculations with
corrections for translational entropy are close to the experimental
values. For details, see the ESI†.
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 For selected reviews of recent advances in photochemical reactions,
see: (a) M. Fagnoni, D. Dondi, D. Ravelli and A. Albini, Chem. Rev.,
2007, 107, 2725; (b) N. Hoffmann, Chem. Rev., 2008, 108, 1052;
(c) D. Ravelli, D. Dondi, M. Fagnoni and A. Albini, Chem. Soc. Rev.,
2009, 38, 1999; (d) N. Hoffmann, ChemSusChem, 2012, 5, 352;
(e) D. Ravelli, M. Fagnoni and A. Albini, Chem. Soc. Rev., 2013,
42, 97; ( f ) J. J. Douglas, M. J. Sevrin and C. R. J. Stephenson, Org.
Process Res. Dev., 2016, 20, 1134; (g) M. H. Shaw, J. Twilton and
D. W. C. MacMillan, J. Org. Chem., 2016, 81, 6898; (h) N. A. Romero
and D. A. Nicewicz, Chem. Rev., 2016, 116, 10075.
9 (a) F. D. Lewis and T.-I. Ho, J. Am. Chem. Soc., 1980, 102, 1751;
(b) F. D. Lewis, T.-I. Ho and J. T. Simpson, J. Org. Chem., 1981, 46, 1077.
2 Selected examples of light-driven endergonic reactions. For olefin
isomerizations, see: (a) K. Singh, S. J. Staig and J. D. Weaver, J. Am. 10 These types of enamines are already known to possess high stability
Chem. Soc., 2014, 136, 5275; (b) J. B. Metternich and R. Gilmour,
J. Am. Chem. Soc., 2015, 137, 11254; (c) J. J. Molloy, J. B. Metternich,
C. G. Daniliuc, A. J. B. Watson and R. Gilmour, Angew. Chem., Int.
Ed., 2018, 57, 3168; (d) J. B. Metternich and R. Gilmour, Synlett,
2016, 2541. For [2+2] cycloadditions, see: (e) K. Singh, W. Trinh,
R. Latifi and J. D. Weaver, Org. Biomol. Chem., 2019, 17, 1854;
( f ) M. Dinda, S. Chakraborty, M. K. Si, S. Samanta, B. Ganguly,
S. Maiti and P. K. Ghosh, RSC Adv., 2014, 4, 54558. For examples of
CO2 fixation, see: (g) Y. Masuda, N. Ishida and M. Murakami, J. Am.
Chem. Soc., 2015, 137, 14063. For dehydrogenative cross-coupling,
see: (h) G. Zhang, L. Zhang, H. Yi, Y. Luo, X. Qi, C.-H. Tung, L.-Z. Wu
and A. Lei, Chem. Commun., 2016, 52, 10407. For hydroamination to
olefins, see: (i) A. J. Musacchio, B. C. Lainhart, X. Zhang,
and fascinating electronic properties for hole-transport materials.
For examples, see: (a) J. A. Sinicropi, J. R. Cowdery-Corvan,
E. H. Magin and P. M. Borsenberger, Chem. Phys., 1997, 218, 331;
(b) E. Puodziukynaite, E. Burbulis, J. V. Grazulevicius, V. Jankauskas,
A. Undzenas and V. Linonis, Synth. Met., 2007, 157, 696;
(c) A. Matoliukstyte, E. Burbulis, J. V. Grazulevicius, V. Gaidelis and
V. Jankauskas, Synth. Met., 2008, 158, 462; (d) E. Puodziukynaite,
J. V. Burbulis, J. V. Grazulevicius, V. Getautis and V. Jankauskasb,
Synth. Met., 2008, 158, 993; (e) R. Paspirgelyte, J. V. Grazulevicius,
S. Grigalevicius and V. Jankauskas, Synth. Met., 2009, 159, 1014;
( f ) R. Paspirgelyte, R. Zostautiene, G. Buika, J. V. Grazulevicius,
S. Grigalevicius, V. Jankauskas, C.-C. Chen, Y.-C. Chung, W.-B. Wang
and J. H. Jou, Synth. Met., 2010, 160, 162.
S. G. Naguib, T. C. Sherwood and R. R. Knowles, Science, 2017, 11 A. Tahara, Y. Miyamoto, R. Aoto, K. Shigeta, Y. Une, Y. Sunada,
355, 727. For isomerization of alcohols, see: ( j) E. Ota, H. Wang,
Y. Motoyama and H. Nagashima, Organometallics, 2015, 34, 4895.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2019