E
K. A. Alekseeva et al.
Letter
Synlett
Indeed, the main inferences drawn from the proton
NMR spectra are in excellent agreement with the data ob-
tained from the XRD analysis. In particular, the most dis-
tinctive features of acid 19b are the absence of a furan ring
and the presence of the strong intramolecular hydrogen
bonds (see Scheme 5, Figure 3 and Supporting Information)
stabilizing the almost planar conformation of the molecule
(except for the 6-(2-bromoethyl) substituent). Moreover, a
distribution of the bond lengths within the molecule 19b
indicates the presence of an extended conjugated system. In
the crystal, molecules of 19b are packed in stacks along the
crystallographic a axis. Within the stacks, molecules are
bound by the ···-stacking interactions.
References and Notes
(1) Recent examples of synthesis of furo[2,3-f]isoindoles: (a) Min,
B. K.; Lim, J. W.; Roh, H. J.; Kim, J. N. Bull. Korean Chem. Soc.
2016, 37, 1724. (b) Ohno, H.; Iuchi, M.; Fujii, N.; Tanaka, T. Org.
Lett. 2007, 9, 4813. (c) Ohno, H.; Iuchi, M.; Kojima, N.;
Yoshimitsu, T.; Fujii, N.; Tanaka, T. Chem. Eur. J. 2012, 18, 5352.
(d) Chirkova, Z. V.; Filimonova, S. I.; Abramov, I. G. Russ. J. Gen.
Chem. 2019, 89, 1307. (e) Xiao, X.; Hoye, T. R. J. Am. Chem. Soc.
2019, 141, 9813. (f) Ohno, H.; Yamamoto, M.; Iuchi, M.; Fujii, N.;
Tanaka, T. Synthesis 2011, 2567. (g) Nitti, A.; Bianchi, G.; Po, R.;
Swager, T. M.; Pasini, D. J. Am. Chem. Soc. 2017, 139, 8788.
(h) Woods, B. P.; Baire, B.; Hoye, T. R. Org. Lett. 2014, 16, 4578.
(2) (a) Yoshida, T.; Kato, T.; Kawamura, Y.; Matsumoto, K.; Itazaki,
H. US 5324742A, 1994. (b) Kawanishi, K.; Ueda, H.; Moriyasu, M.
Curr. Med. Chem. 2003, 10, 1353. (c) Matsumoto, K.; Nagashima,
K.; Kamigauchi, T.; Kawamura, Y.; Yasuda, Y.; Ishii, K.; Uotani,
N.; Sato, T.; Nakai, H.; Terui, Y.; Kikuchi, J.; Ikenisi, Y.; Yoshida,
T.; Kato, T.; Iatazaki, H. J. Antibiot. 1995, 48, 439.
Taking into account the absence of cleavage of the furan
ring in the case of synthesis of acids 3 (see Scheme 2), be-
low we made preliminary conclusions about the mecha-
nism for formation of isoindoles 19.
(3) Haj-Yehia, A.; Khan, M. US 20060258652A1, 2006.
It seems obvious, that the mechanism for the formation
of compounds 19 should include all steps of the mechanism
for the formation of furo[2,3-f]isoindole-4-carboxylic acids
3, shown in Scheme 3, and lead to isomeric furo[2,3-f]isoin-
dole-8-carboxylic acids 16 (Scheme 5). However, the spatial
closeness of the oxygen atom of the furan ring and the hy-
droxyl group in acids 16 promotes the formation of an in-
tramolecular H-bond, which, in the extreme case, gives rise
to formation of zwitterion 17. The nucleophilic attack by a
bromine anion on the C-2 atom of this ion, with the simul-
taneous cleavage of the furan ring, leads to anion 18. In or-
der to improve the yield of isoindole 19a, we have used 1
equiv of KBr or BrNBu4 as exogenous sources of a bromine
anion, but the yield of the product remained close to 30%.
In conclusion, in the first part of this work, we have pro-
posed an easy tandem sequence that allows fast assembling
of benzoic acids annelated with both hydrogenated furan
and pyrrole rings from readily available 3-(furan-2-yl)allyl-
amines and bromomaleic anhydride. The more attractive
feature of the sequence from a theoretical point of view is
an unexpected ‘transposition of aromaticity’ from a furan
to a cyclohexene ring. From the results of the second part of
the research, it should be emphasized the high atom-effi-
ciency of the interaction between 3-(furan-3-yl)allylamines
and bromomaleic anhydride, proceeding without loss of a
single atom and, at the same time, with a complex rear-
rangement of the carbon skeleton of the starting molecules.
(4) Jin, B.; Dong, Q.; Hung, G. WO 2018151830, 2018.
(5) (a) Chigarev, A. G.; Ioffe, D. V. Pharm. Chem. J. 1968, 435.
(b) Padwa, A.; Snyder, J. P.; Curtis, E. A.; Sheehan, S. M.;
Worsencroft, K. J.; Kappe, C. O. J. Am. Chem. Soc. 2000, 122, 8155.
(c) Kende, A. S.; Deng, W.-P.; Zhong, M.; Guo, X.-C. Org. Lett.
2003, 5, 1785. (d) Deng, W.-P.; Zhong, M.; Guo, X.-C.; Kende, A.
S. J. Org. Chem. 2003, 68, 7422. (e) Harin, M. A.; Pautet, F.;
Fillion, H.; Domard, M.; Fenet, B. Tetrahedron 1995, 51, 9595.
(f) Traulsen, T.; Friedrichsen, W. J. Chem. Soc., Perkin Trans. 1
2000, 1387. (g) Wang, F.; Tong, X.; Cheng, J.; Zhang, Z. Chem. Eur.
J. 2004, 10, 5338. (h) Ohno, H.; Yamamoto, M.; Iuchi, M.; Tanaka,
T. Angew. Chem. Int. Ed. 2005, 44, 5103.
(6) (a) Hoye, T. R.; Baire, B.; Niu, D.; Willoughby, P. H.; Woods, B. P.
Nature 2012, 490, 208. (b) Vandavasi, J. K.; Hu, W.-P.; Hsiao, C.-
T.; Senadi, G. C.; Wang, J.-J. RSC Adv. 2014, 4, 57547.
(c) Karmakar, R.; Yun, S. Y.; Wang, K.-P.; Lee, D. Org. Lett. 2014,
16, 6. (d) Hoye, T. R.; Baire, B.; Wang, T. Chem. Sci. 2014, 5, 545.
(7) (a) Horak, Y. I.; Lytvyn, R. Z.; Laba, Y.-O. V.; Homza, Y. V.;
Zaytsev, V. P.; Nadirova, M. A.; Nikanorova, T. V.; Zubkov, F. I.;
Varlamov, A. V.; Obushak, M. D. Tetrahedron Lett. 2017, 58, 4103.
(b) Zubkov, F. I.; Zaytsev, V. P.; Mertsalov, D. F.; Nikitina, E. V.;
Horak, Y. I.; Lytvyn, R. Z.; Homza, Y. V.; Obushak, M. D.;
Dorovatovskii, P. V.; Khrustalev, V. N.; Varlamov, A. V. Tetrahe-
dron 2016, 72, 2239. (c) Horak, Y. I.; Lytvyn, R. Z.; Homza, Y. V.;
Zaytsev, V. P.; Mertsalov, D. F.; Babkina, M. N.; Nikitina, E. V.;
Lis, T.; Kinzhybalo, V.; Matiychuk, V. S.; Zubkov, F. I.; Varlamov,
A. V.; Obushak, M. D. Tetrahedron Lett. 2015, 56, 4499.
(8) Polyanskii, K. B.; Alekseeva, K. A.; Raspertov, P. V.; Kumandin, P.
A.; Nikitina, E. V.; Gurbanov, A. V.; Zubkov, F. I. Beilstein J. Org.
Chem. 2019, 15, 769.
(9) Bromomaleic anhydride as an internal dienophile: (a) Mellor, J.
M.; Wagland, A. M. J. Chem. Soc., Perkin Trans. 1 1989, 997.
(b) Mellor, J. M.; Wagland, A. M. Tetrahedron Lett. 1987, 28,
5339.
Funding Information
(10) General Procedure for the Synthesis of the Initial Allyl-
amines 2 and 15
Funding for this research was provided by the Russian Science Foun-
dation (RSF, project no. 18-13-00456).
R
u
si
a
n
S
c
i
e
n
c
e
F
o
u
n
d
ati
o
n
(18-13-0
0
4
5
6)
Powdered anhydrous MgSO4 (1.97 g, 16.4 mmol) was added to a
stirred solution of 2-furylacrolein or 3-furylacrolein (1.00 g, 8.2
mmol) and the corresponding amine (8.2 mmol) in CH2Cl2 (20
mL) at r.t. After approx. 12 h, MgSO4 was filtered off through a
fine layer of SiO2, washed with CH2Cl2 (2 × 15 mL), and the solu-
tion was concentrated under reduced pressure. The residue was
diluted with MeOH (20 mL), and then NaBH4 (0.62 g, 16.4
Supporting Information
Supporting information for this article is available online at
S
u
p
p
orit
n
gInformati
o
n
S
u
p
p
orti
n
gInformati
o
n
© 2020. Thieme. All rights reserved. Synlett 2020, 31, A–F