H
R
R
(A)
(B)
H
(C)
[M]
•
[M]
•
•
[M]
H
[M]
OH
R'
+
R'
-H2O
R'
R'
OH
R
OH
R
R' = CHR''2
-H2O
R' = CHR''2
(D)
(E)
H
[M]
•
R''
R''
R
Scheme 2
parameters (non-hydrogen atoms anisotropic, hydrogen atoms in idealised
positions, C–H = 0.96 Å). CCDC 182/1164.
complex 2 and the alkenylvinylidenes 3 and 4 are transformed
by water (5 equiv.) into the known carbonyl derivative fac,cis-
[(PNP)RuCl2(CO)] (5)14 and the corresponding free alkene
H2CNCRRA (R = RA = Ph; R = Me or Ph, RA = Me). The
quantitative formation of 1 equiv. of alkene was shown by GC–
MS analysis and NMR spectroscopy (1H, 13C) on both reaction
mixtures and samples isolated by TLC. The hydrolysis reactions
are quite fast at reflux temperature in either THF or CH2Cl2 but
take place also at room temperature. When D2O was employed
in the place of H2O, the alkene was found to regioselectively
incorporate two gem deuterium atoms (D2CNCRRA) indicating
that both terminal hydrogens come from water. Finally, the
selective incorporation of 18O in the carbonyl complex 5-18O,
n(C18O) 1899 cm21, was observed when the hydrolysis
reactions were carried out with H218O confirming that the Ca–
Cb bond scission in either allenylidene or alkenylvinylidene
ligand was brought about by water and not by adventitious
oxygen.15
In conclusion, for the first time it has been shown that both
allenylidene and alkenylvinylidene ruthenium complexes, dis-
solved in organic solvents, may react with water producing CO
ligands and free alkene via regioselective cleavage of the Ca–Cb
bond. The hydrolysis of metal vinylidenes has recently been
reported to give carbonyl species and the saturated hydrocarbon
derived from the homologation of the vinylidene substituent.15
From allenylidene and alkenylvinylidene complexes, unsat-
urated hydrocarbons are selectively formed, which may open
the door to the alternative synthesis of high-added value alkenes
or alkenes selectively deuterated at the unsubstituted end.
This work was supported by the bilateral program «Azione
Integrata» between the University of Florence (Italy) and
Almeria (Spain) and by the EC contracts INTAS 96-1176 and
INCO ERBIC15CT960746.
1 E. O. Fischer, H.-J. Halder, A. Franck, F. H. Ko¨hler and G. Huttner,
Angew. Chem., Int. Ed. Engl., 1976, 15, 623; H. Berke, Angew. Chem.,
Int. Ed. Engl., 1976, 15, 624.
2 For the general reactivity of allenylidenes, see: (a) M. A. Esteruelas,
A. V. Go´mez, A. M. Lo´pez, E. On˜ate and N. Ruiz, Organometallics,
1998, 17, 4959 and references therein; (b) R. Wiedemann, P. Steinert, O.
Gevert and H. Werner, J. Am. Chem. Soc., 1996, 118, 2495; (c) H.
Fischer, G. Roth, D. Reindl and C. Troll, J. Organomet. Chem., 1993,
454, 133; (d) V. N. Kalinin, V. V. Deunov, M. A. Lusenkova, P. V.
Petrovsky and N. E. Kolobova, J. Organomet. Chem., 1989, 379, 303;
(e) D. Touchard and P. H. Dixneuf, Coord. Chem. Rev., 1998, 178–180,
409; (f) M. I. Bruce, Chem. Rev., 1998, 98, 2797.
3 For theoretical studies, see: (a) M. A. Esteruelas, V. Go´mez, A. M.
Lo´pez, J. Modrego and E. On˜ate, Organometallics, 1997, 16, 5826; (b)
B. E. R. Schilling, R. Hoffmann and D. L. Lichtenberger, J. Am. Chem.
Soc., 1979, 101, 585.
4 A. Fu¨rstner, M. Picquet, C. Bruneau and P. H. Dixneuf, Chem.
Commun., 1998, 1315; B. M. Trost and J. A. Flygare, J. Am. Chem. Soc.,
1992, 114, 5476.
5 (a) V. Cadierno, M. P. Gamasa, J. Gimeno, M. C. Lo´pez-Gonzalez, J.
Borge and S. Garcia-Granda, Organometallics, 1997, 16, 4453; (b) C.
Bohanna, B. Callejas, A. J. Edwards, M. A. Esteruelas, F. J. Lahoz,
L. A. Oro, N. Ruiz and C. Valero, Organometallics, 1998, 17, 373; (c)
D. Touchard, P. Haquette, A. Daridor, A. Romero and P. H. Dixneuf,
Organometallics, 1998, 17, 3844; (d) D. Pilette, K. Ouzzine, H. Le
Bozec, P. H. Dixneuf, C. E. F. Rickard, and W. R. Roper, Organo-
metallics, 1992, 11, 809.
6 M. A. Esteruelas, A. V. Go´mez, F. J. Lahoz, A. M. Lo´pez, E. On˜ate and
L. A. Oro, Organometallics, 1996, 15, 3423.
1
7 The iridium ethenyl complex Ir(CRNCRCRNCR)(PPh3)2(CO)(h -
CHNCH2) (R
=
CO2Me) was indeed obtained by reacting
Ir(CRNCRCRNCR)(PPh3)2(CO)Cl (R = CO2Me) with HC·CCH2OH.
The hydrolysis of an undetected allenylidene intermediate was hypothe-
sized: J. M. O’Connor and K. Hilbner, Chem. Commun., 1995, 1209.
8 C. Bruneau and P. H. Dixneuf, Acc. Chem. Res., 1999, in press.
9 J. P. Selegue, Organometallics, 1982, 1, 217.
Notes and references
10 C. Bianchini, P. Innocenti, D. Masi, M. Peruzzini and F. Zanobini, Gazz.
Chim. Ital., 1992, 122, 461.
† Satisfactory elemental analyses were obtained for 2 (red purple crystals),
3 (pink crystals), and 4 (pink red crystals). Selected spectroscopic data for
11 Complexes 2–4 exhibit a rich chemistry which will be detailed in due
course; C. Bianchini and M. Peruzzini, manuscript in preparation.
12 X-Ray authenticated Ru(ii)-diphenylallenylidenes include: [CpRu(P-
2: IR (nCNCNC) 1916m cm21 31P{1H} NMR (CD2Cl2, 85% H3PO4, 294 K),
.
d 49.12 (s). 13C{1H} NMR (CD2Cl2, TMS, 294 K), d 304.3 (t, 2JCP 19.2 Hz,
5
Ca), 233.8 (s, Cb), 150.8 (s, Cg). For 3: IR (nCNC) 1610s cm21
.
1H NMR
Me3)2{CNCNCPh2}], ref. 9; [(h -C9H7)Ru(PPh3)2{CNCNCPh2}], ref.
5(b); [RuCl(Pri2CH2CH2OMe)2{CNCNCPh2}](OTf), M. Martin, O.
Gevert and H. Werner, J. Chem. Soc., Dalton Trans., 1996, 2275;
4
(CDCl3, TMS, 294 K), d 5.16 (t, JHP 3.3 Hz, 1H, CH), 4.63 and 4.15 (d,
2JHH 1.8 Hz, 1H each, CH2), 2.28 [s, 3H, CH3(alkenylvinylidene)]. 31P{1H}
NMR (CDCl3, 85% H3PO4, 294 K), 47.81 (s). 13C{1H} NMR (CDCl3,
TMS, 294 K), d 313.5 (t, 2JCP 18.0 Hz, Ca), 126.6 (s, Cd), 114.2 (s, Cb), 18.5
[s, CH3(alkenylvinylidene)], confirmed by a DEPT-135 experiment, Cg, not
assigned. For 4: IR (nCNC) 1617s cm21. 1H NMR (CD2Cl2, TMS, 294 K),
5.73 and 5.25 (d, 2JHH 1.6 Hz, 1H each CH2), 5.10 (t, 4JHP 8.2 Hz, 1H, CH).
31P{1H} NMR (CD2Cl2, 85% H3PO4, 294 K), d 49.20 (s). 13C{1H} NMR
(CD2Cl2, TMS reference, 294 K), 350.3 (t, 2JCP 17.5 Hz, Ca), 150.2 (s, Cg),
122.6 (s, Cd), 113.5 (s, Cb), confirmed by a DEPT-135 experiment.
‡ Crystal data: C46H45Cl2NP2Ru, Mw = 845.79, monoclinic, space group
P21/c, a = 11.881(9), b = 13.446(2), c = 25.264(5) Å, b = 98.00(5)°, V
= 3997(3) Å3, Z = 4, Dc = 1.406 g cm23, T = 293(2) K, m(Mo-Ka) =
0.640 mm21; red crystal, crystal size 0.23 3 0.35 3 0.29 mm, Enraf Nonius
CAD4 diffractometer, 5545 independent reflections. The structure was
solved by direct methods (SIR92)16 and refined (F02) using the program
SHELX-93.17 An empiric absorption correction was applied via y scan
(0.97–1.00). The final R, Rw indices [I > 2s(I)] were 0.0644, 0.1544 for 220
2
1
[RuCl2(h -Pri2CH2CH2OMe)(h -P-Pri2CH2CH2OMe){CNCNCPh2}],
H. Werner, A. Stark, P. Steinert, C. Gru¨nwald and J. Wolf.
13 (a) J. P. Selegue, B. A. Young and S. L. Logan, Oragnometallics, 1991,
10, 1972; (b) V. Cadierno, M. P. Gamasa, J. Gimeno, J. Borge and S.
Garcia-Granda, Organometallics, 1997, 16, 3187.
14 C. Bianchini, P. Innocenti, M. Peruzzini, A. Romerosa and F. Zanobini,
Organometallics, 1996, 15, 272.
15 The hydrolysis of related vinylidene species has been studied in detail,
see: C. Bianchini, J. A. Casares. M. Peruzzini, A. Romerosa and F.
Zanobini, J. Am. Chem. Soc., 1996, 118, 4585.
16 A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, C. Burla, G.
Polidori and M. Camalli, J. Appl. Crystallogr., 1994, 27, 435.
17 G. M. Sheldrick, SHELX-93, University of Göttingen, 1993.
18 C. K. Johnson, ORTEP, Oak Ridge, TN, 1976.
Communication 9/00011I
444
Chem. Commun., 1999, 443–444