J . Org. Chem. 1999, 64, 2947-2949
2947
ethylidene rearrangement of alkynes.7 Indeno[2,1-a]-
indenes have been synthesized by the nucleophilic sub-
stitution of bromine from tetrabromodibenzo[a,e]cyclo-
octene by organolithium reagents.8 It has been reported
that substitution with bulky groups9 or benzofusion10,11
gives stability to the pentalene framework.
Un u su a l F or m a tion of a Cyclyn e Dim er
a n d a n In d en oin d en e Der iva tive
Manisha Chakraborty, Claire A. Tessier, and
Wiley J . Youngs*
Department of Chemistry, University of Akron,
Akron, Ohio 44325-3601
Received October 20, 1998
Stephens-Castro coupling1 and Sonogashira-Hagi-
hara coupling2 of o-ethynyliodoaryls have been used to
form cyclotriynes such as 2.3 The tetramer, 3, and
hexamer, 4, are typically low-yield side products in these
reactions. The formation of the dibenzocyclyne dimer 1
or substituted analogues by these types of coupling
reactions has not been reported for o-ethynyliodoben-
zenes4 or o-ethynyliodothiophenes.5
Here we present the unusual formation of the benzo-
cyclyne dimer (10) and the indeno[2,1-a]indene derivative
(11) under the conditions of the Sonogashira-Hagihara
reaction (Scheme 1). Desilylation of 3-iodo-5,6-dimethyl-
2-(2-(trimethylsilyl)ethynyl)hydroquinone (7)12 by potas-
sium fluoride in methanol gives 5,6-dimethyl-2-ethynyl-
3-iodohydroquinone (8) in 63% yield. The combination of
8 with tert-butyldimethylsilyl chloride13 and imidazole in
dry methylene chloride under argon at room temperature
for 2 days gives 5,6-dimethyl-2-ethynyl-3-iodo-1,4-bis-
[((1,1-dimethylethyl)dimethylsilyl)oxy]benzene (9) in 43%
yield. Palladium/copper-catalyzed coupling of 9 in 1:1
i-Pr2NH/toluene at 90 °C for 1 day gave dimer 10 in 10%
yield and 2,3,7,8-tetramethyl-1,4,6,9-tetra[((1,1-dimeth-
ylethyl)dimethylsilyl)oxy]-indeno[2, 1-a]indene (11) in
67% yield. The mass spectrum also revealed the presence
of traces of the trimer (12) and higher cyclics, e.g.,
tetramer, pentamer, and a series of linear oligomers. No
reaction was observed at room temperature when moni-
tored by TLC.
The steric hindrance between the bulky TBDMS
groups increases in going from 10 to 12. This steric
hindrance may be responsible for the preferential forma-
tion of 10 and 11.
Bromination followed by dehydrobromination is the
The high yield of the indenoindene derivative 11 may
be due to the thermal rearrangement of the dimer 10 to
the more stable indenoindene ring system. The yield of
11 in this case is much higher than the yield of com-
pound 6 from FVP of 5. This relatively high yield of 67%
is also noticeable when compared to the yields of 47%
for 2 and 8% for 3 isolated by Stephens-Castro cou-
pling3d and 36% for 2 from the Sonogashira-Hagihara
reaction.3c
only reported route to the formation of dibenzocyclyne
1.6
(5) (a) Solooki, D.; Kennedy, V. O.; Tessier, C. A.; Youngs, W. J .
Synlett 1990, 427. (b) Solooki, D.; Bradshaw, J . D.; Tessier, C. A.;
Youngs, W. J . Organometallics 1994, 13, 451.
(6) Wong, H. N. C.; Garratt, P. J .; Sondheimer, F. J . Am. Chem.
Soc. 1974, 96, 5604.
(7) Brown, R. F. C.; Eastwood, F. W.; Wong, N. R. Tetrahedron Lett.
1993, 34, 3607.
Flash vacuum pyrolysis of diphenylbutadiyne (5) gives
indeno[2,1-a]indene (6) in 19% yield by an ethyne-
(8) Hellwinkel, V. D.; Hasselbach, H.-J .; La¨mmerzahl, F. Angew.
Chem. 1984, 96, 713.
(9) Hafner, K.; Suss, H. U. Angew. Chem., Int. Ed., Engl. 1973, 12,
575.
(1) (a) Stephens, R. D.; Castro, C. E. J . Org. Chem. 1963, 28, 3313.
(b) Castro, C. E.; Havlin, R.; Honward, V. K.; Malte, A.; Moje, S. J .
Am. Chem. Soc. 1969, 91, 6464.
(2) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975,
4467.
(10) Blood, C. T.; Linstead, R. P. J . Chem. Soc. 1952, 2263.
(11) Anderson, M. R.; Brown, R. F. C.; Coulston, K. J .; Eastwood,
F. W.; Ward, A. Aust. J . Chem. 1990, 43, 1137.
(12) Nicolaou, K. C.; Liu, A.; Zeng, Z.; McComb, S. J . Am. Chem.
Soc. 1992, 114, 9279.
(13) (a) Kendall, P. M.; J ohnson, J . V.; Cook, C. E. J . Org. Chem.
1979, 44(9), 1421. (b) Corey, E. J .; Venkateswarlu, A. J . Am. Chem.
Soc. 1972, 94(17), 6190. (c) Green, T. W.; Wuts P. G. M. Protective
groups in organic synthesis; J ohn Wiley & Sons: New York, 1991; pp
77, 80. Hansen, D. W., J r.; Pilipauskas, D. J . Org. Chem. 1985, 50,
945.
(3) (a) Campbell, I. D.; Eglinton, G.; Henderson, W.; Raphael, R. A.
J . Chem. Soc., Chem. Commun. 1966, 87. (b) Staab, H. A.; Bader, R.
Chem. Ber. 1970, 103, 1157. (c) Huynh, C.; Linstrumelle, G. Tetrahe-
dron 1988, 44, 6337. (d) Solooki, D.; Ferrara, J . D.; Malaba, D.;
Bradshaw, J . D.; Tessier, C. A.; Youngs, W. J . Inorg. Synth. 1997, 31,
122.
(4) (a) Kinder, J . D.; Tessier, C. A.; Youngs, W. J . Synlett 1993, 149.
(b) Youngs, W. J .; Kinder, J . D.; Bradshaw, J . D.; Tessier, C. A.
Organometallics 1993, 12, 2406.
10.1021/jo982111a CCC: $18.00 © 1999 American Chemical Society
Published on Web 03/20/1999