3 (a) J. J. L. M. Cornelissen, A. E. Rowan, R. J. M. Nolte and
N. A. J. M. Sommerdijk, Chem. Rev., 2001, 101, 4039–4070;
(b) A. Friggeri, C. van der pol, K. J. C. van Bommel, A. Heeres,
M. C. A. Stuart, B. L. Feringa and J. van Esch, Chem.–Eur. J.,
2005, 11, 5353–5361; (c) J. Bae, J.-H. Choi, Y.-S. Yoo, N.-K. Oh,
B.-S. Kim and M. Lee, J. Am. Chem. Soc., 2005, 127, 9668–9669;
(d) W.-Y. Yang, E. Lee and M. Lee, J. Am. Chem. Soc., 2006, 128,
3484–3485; (e) K. Murata, M. Aoki, T. Suzuki, T. Harada,
H. Kawabata, T. Komori, F. Ohseto, K. Ueda and S. Shinkai,
J. Am. Chem. Soc., 1994, 116, 6664–6676; (f) S. J. George,
A. Ajayaghosh, P. Jonkheijm, A. P. H. J. Schenning and
E. W. Meijer, Angew. Chem., Int. Ed., 2004, 43, 3422–3425;
(g) A. Ajayaghosh, C. Vijayakumar, R. Varghese and S. J. George,
Angew. Chem., Int. Ed., 2006, 45, 456–460.
Fig. 10 Negative-staining TEM image of C4AG solution in the presence
of ionic surfactant: (a) fragmentized unfolded single-stranded nanofibers
caused by addition of sodium dodecyl sulfonate; (b) global vesicles
induced by SDBS.
4 (a) J. H. Fuhrhop, P. Schnieder, J. Rosenberg and E. Boekemat,
J. Am. Chem. Soc., 1987, 109, 3387–3390; (b) J. H. Fuhrhop,
P. Schnieder, E. Boekema and W. Helfrich, J. Am. Chem. Soc.,
1988, 110, 2861–2867.
5 (a) W. S. Jin, T. Fukushima, M. Niki, A. Kosaka, N. Ishii and
T. Aida, Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 10801–10806;
(b) T. Yamamoto, T. Fukushima, A. Kosaka, W. S. Jin,
Y. Yamamoto, N. Ishii and T. Aida, Angew. Chem., Int. Ed., 2008,
47, 1672–1675.
6 (a) S.-I. Sakurai, K. Okoshi, J. Kumaki and E. Yashima, J. Am.
Chem. Soc., 2006, 128, 5650–5651; (b) J. Kumaki, T. Kawauchi,
K. Okoshi, H. Kusanagi and E. Yashima, Angew. Chem., Int. Ed.,
2007, 46, 5348–5351.
7 (a) D. S. Chung, G. B. Benedek, F. M. Konikoff and J. M. Donovan,
Proc. Natl. Acad. Sci. U. S. A., 1993, 90, 11341–11345; (b) A. Kaplun,
Y. Talmon, F. M. Konikoffb, M. Rubin, A. Eitan, M. Tadmor and
D. Lichtenberg, FEBS Lett., 1994, 340, 78–82; (c) Y. Z. Zastavker,
N. Asherie, A. Lomakin, A. Lomakin, J. Pande, J. M. Donovan,
J. M. Schnur and G. B. Benedek, Proc. Natl. Acad. Sci. U. S. A.,
1999, 96, 7883–7887.
nanofibers can be clearly observed with the addition of sodium
dodecyl sulfonate. This can be rationalized that ionic surfactant
can penetrate into helical aggregate owing to hydrophobic effect
and impart electrostatic repulsion to the adjacent helix which can
result into the unfolding of the double helix. Similar results were
also found by using other ionic surfactants. Further addition of
ionic surfactants can result into the dissociation of nanofibers. In
addition, the double nanohelix can be shaped into global vesicles
with the addition of sodium dodecylbenzene sulfonate (SDBS)
(Fig. 10b). The vesicles exhibit uniform diameter of 40–50 nm. It
is proposed that aromatic group in sodium dodecylbenzene
sulfonate may contribute to vesicle formation.
8 (a) J. M. Schnur, B. R. Ratna, J. V. Selinger, A. Singh, G. Jyothi and
K. R. K. Easwaran, Science, 1994, 264, 945–947; (b) B. N. Thomas,
R. C. Corcoran, C. L. Cotant, C. M. Lindemann, J. E. Kirsch and
P. J. Persichini, J. Am. Chem. Soc., 1998, 120, 12178–12186;
(c) R. Oda, I. Huc, M. Schmutz, S. J. Candau and
F. C. MacKintosh, Nature, 1999, 399, 566–569; (d) R. Oda, I. Huc
and S. J. Candau, Angew. Chem., Int. Ed., 1998, 37, 2689–2691.
9 (a) S. N. Dublin and V. P. Conticello, J. Am. Chem. Soc., 2008, 130,
49–51; (b) H. G. Cui, T. Muraoka, A. G. Cheetham and S. I. Stupp,
Nano Lett., 2009, 9, 945–951; (c) L. S. Li, H. Z. Jiang,
B. W. Messmore, S. R. Bull and S. I. Stupp, Angew. Chem., Int.
Ed., 2007, 46, 5873–5876; (d) Y. Li, G. T. Li, X. Y. Wang,
W. N. Li, Z. X. Su, Y. H. Zhang and Y. Ju, Chem.–Eur. J., 2009,
15, 6399–6407; Y. Qiao, Y. Y. Lin, Y. J. Wang, Z. Y. Yang, J. Liu,
J. Zhou, Y. Yan and J. B. Huang, Nano Lett., 2009, 9, 4500–4504.
10 T. Maeda, Y. Furusho, S.-I. Sakurai, J. Kumaki, K. Okoshi and
E. Yashima, J. Am. Chem. Soc., 2008, 130, 7938–7945.
11 (a) D. A. Frankel and D. F. O’Brien, J. Am. Chem. Soc., 1991, 113,
7436–7439; (b) D. A. Frankel and D. F. O’Brien, J. Am. Chem.
Soc., 1994, 116, 10057–10069.
12 H. Yanagawa, Y. Ogawa, H. Furuta and K. Tsunox, J. Am. Chem.
Soc., 1989, 111, 4567–4570.
13 (a) H. Jinnai, T. Kaneko, K. Matsunaga, C. Abetz and V. Abetz, Soft
Matter, 2009, 5, 2042–2046; (b) J. Dupont, G. Liu, K.-I. Niihara,
R. Kimoto and H. Jinnai, Angew. Chem., Int. Ed., 2009, 48, 6144–
6147.
Conclusions
In conclusion, a hierarchical self-assembled double helix was
fabricated by a novel amphiphile of glucose-based lipid. The
driving forces for the self-assembled architectures are proposed
to be multiple weak interactions including hydrophobic inter-
action, aromatic stacking and hydrogen bond. In addition,
morphological modulation of supramolecular double helix can
be rationally realized by external stimuli, such as pH, light, and
surfactant addition. Triggered by external inputs, double-strand
helix can be shaped into spherical micelle or vesicle. Meanwhile
we have for the first time realized unfolding double-stranded
helix into single-stranded nanofibers by introducing repulsive
effect into the aggregates. We hope our work can help to
understand helical structures in life (i.e. DNA, protein b-sheet,
etc.) and also the self-assembled complex architectures in nature.
In addition, the supramolecular self-assembled double helix is
anticipated to be exploited to mimic DNA biomineralization to
direct inorganic double-stranded helices synthesis.
14 (a) T. Muraoka, H. G. Cui and S. I. Stupp, J. Am. Chem. Soc., 2008,
130, 2946–2947; (b) J. Koning, C. Boettcher, H. Winkler, E. Zeitler,
Y. Talmon and J.-H. Fuhrhop, J. Am. Chem. Soc., 1993, 115, 693–
700.
15 J.-M. Lehn, Supramolecular Chemistry-Concepts and Perspectives;
Wiley-VCH, Germany, 1995.
Acknowledgements
This work was supported by National Natural Science Foun-
dation of China (20873001, 20633010 and 50821061) and
National Basic Research Program of China (Grant No.
2007CB936201).
€
€
16 S. Warwel, M. Rusch gen Klaas, H. Schier, F. Bruse and B. Wiege,
Eur. J. Lipid Sci. Technol., 2001, 103, 645–654.
17 J. H.Jung, S. ShinkaiandT. Shimizu,Chem.–Eur. J., 2002, 8, 2684–2690.
18 A. E. Mirsky and L. Pauling, Proc. Natl. Acad. Sci. U. S. A., 1936, 22,
439–447.
19 (a) G. S. Kumar and D. C. Neckers, Chem. Rev., 1989, 89, 1915–1925;
(b) C. Dugave and L. Demange, Chem. Rev., 2003, 103, 2475–2532.
20 H. C. Kang, B. M. Lee, J. Yoon and M. Yoon, J. Colloid Interface
Sci., 2000, 231, 255–264.
References
1 J. D. Watson and F. H. C. Crick, Nature, 1953, 171, 737–738.
2 W. Saenger, Principles of Nucleic Acid Structure, Springer-Verlag,
New York, 1984.
2036 | Soft Matter, 2010, 6, 2031–2036
This journal is ª The Royal Society of Chemistry 2010