fluorescence. As examples the following reagents: fluorescam-
ine,15 dansyl chloride (DNS),16 7-fluoro-4-nitrobenzo-2-oxa-1,3-
diazole (NBD-F),17 o-phthalaldehyde (OPA),18-20 and naphthalene-
2,3-dicarboxaldehyde (NDA),21-23 all of which are useful for the
derivatization of analytes possessing primary (DNS, NBD-F, OPA,
and NDA applicable) or secondary (DNS and NBD-F applicable)
amine functional groups, were all initially described in applications
employing fluorescence detection.
is often led to the use of laser-induced fluorescence (LIF);
however, in most cases this is a situation where one has a
miniature separation system that is burdened with a substantially
larger detection system. Because electrochemical detection is a
reaction-detection process dependent on analyte diffusion and
because of the ease of electrode miniaturization, this technique
actually benefits from down-sizing. There are now numerous
examples where miniaturized LC systems30-33 and capillary
electrophoresis systems34-42 have been successful when operated
using EC detection. With regard to µ-chip scale instruments,
several groups43-46 have described the fabrication of separation-
detection systems involving LIF detection, but recent publications
are now describing the use of EC detection in association with a
µ-chip/ [µ-plate separation systems.47,48 Thus, with the advent and
continued progress in the development of these miniaturized
separation systems, there is clearly the need for the development
of reagents designed for use with EC detection.
On the basis of these considerations, the objective of the
present research was the design and development of analytical
derivatization reagents capable of imparting electrochemical
activity upon analytes bearing primary or secondary amine
functional groups. Because of documented detection sensitivity,
ease of oxidation while maintaining stability in acid media, and
oxidation-reduction reversibility, the hydroquinone (HQ) moiety
was selected as the reagent substructure intended to convey EC
activity to the analytical target. Herein we describe our initial
strategies regarding reagent design and results obtained in the
development of the candidate reagents intended to achieve this
goal.
In contrast the systematic development of derivatization
reagents intended to impart electrochemical activity to analytes
appears to have been much more modest. This is highlighted by
the fact that after the introduction of OPA and NDA as primary
amine specific fluorogenic reagents, other researchers subse-
quently reported the electrogenic nature of these reagents.24-26
Thus, while perhaps not true in every case, it does appear that
the majority of reagents available to convey EC activity upon an
analyte were not purposefully designed for said purpose.
In using derivatization reactions for detection enhancement,
one is frequently faced with situations where more than one
functional group is kinetically competent to participate in the
proposed derivatization reaction. When these situations are
encountered, one can optimize the derivatization conditions to
exhaustively label all available sites, thus overcoming the issue
of forming multiple products; however, in the case of fluorescence
detection there is the distinct possibility of interactions leading
to fluorescence quenching and thus a substantially diminished
detection sensitivity.22,27 In contrast, investigations have clearly
demonstrated that, in the case of electrochemical derivatization,
chemical modification of multiple sites simply results in enhanced
detectability.28,29
Current trends in bioanalytical chemistry are clearly mvoing
toward miniaturization of sample size requirements and as a result
the proportional down-sizing of the separation systems. As regards
fluorescence detection, since this technique is optically based,
these miniaturized separation systems naturally lead to the use
of diminished optical path length detection cells, leading to a
compromise in concentration detection limits. To compensate, one
EXPERIMENTAL SECTION
Equipment, Solvents and Chemicals, P rocedures, and
Solutions. Apparatus. Isocratic liquid chromatography experi-
ments were conducted on a modular HPLC system consisting of
an ISCO LC5000 syringe pump (flow rate 1.5 mL/ min), a
Rheodyne model 7125 fixed loop (20 µL) injector, a Kratos
(30) Slais, K. J. Chromatogr. Sci. 1 9 8 6 , 24, 321-329.
(31) Slais, K.; Krejc´ı, M. J. Chromatogr. 1 9 8 2 , 235, 21-29.
(32) Lada, S. H.; Kennedy, R. T. J. Chromatogr. B 1 9 9 7 , 704, 43-52.
(33) Hsieh, S.; Jorgenson, J. W.; Wightman, R. M. Anal. Chem. 1 9 9 5 , 67, 4514-
4521.
(15) Rubenstein, M.; Chen-Kiang, S.; Stein, S.; Udenfriend, S. Anal. Biochem.
1 9 7 9 , 95, 117-121.
(16) DeJong, C.; Hughes, G. J.; Van Wieringen, E.; Wilson, K. J. J. Chromatogr.
1 9 8 2 , 241, 345-359.
(17) Watanabe, Y.; Imai, K. Anal. Biochem. 1 9 8 1 , 116, 471-472.
(18) Hill, D. W.; Walters, F. H.; Wilson, T. D.; Stuart, J. D. Anal. Chem. 1 9 7 9 ,
51, 1338-1341.
(19) Davis, T. P.; Gehrke, C. W.; Cunningham, T. D.; Kuo, K. C.; Gerhardt, K.
O.; Johnson, H. D.; Williams, C. H. J. Chromatogr. 1 9 7 9 , 162, 293-310.
(20) Hogan, D. L.; Draemer, K. L.; Isenberg, J. I. Anal. Biochem. 1 9 8 2 , 127,
17-24.
(21) De Montingy, P.; Stobaugh, J. F.; Givens, R. S.; Carlson, R. G.; Srinivasachar,
K.; Sternson, L. A.; Higuchi, T. Anal. Chem. 1 9 8 7 , 59, 1096-1101.
(22) Matuszewski, B. K.; Givens, R. S.; Srinivasachar, K.; Carlson, R. G.; Higuchi,
T. Anal. Chem. 1 9 8 7 , 59, 1102-1105.
(23) Roach, M. C.; Harmony, M. D. Anal. Chem. 1 9 8 7 , 59, 411-415.
(24) Joseph, M. H. Abstracts of Papers, Third LCEC Symposium on the Biomedical
Applications of LCEC and Voltammetry; Indianapolis, IN, 1982; Abstract #56.
(25) Allison, L. A.; Mayer, G. S.; Shoup, R. E. Anal. Chem. 1 9 8 4 , 56, 1089-
1096.
(34) Ewing, A. G.; Mesaros, J. M.; Gavin, P. F. Anal. Chem. 1 9 9 4 , 66, 527A-
537A.
(35) Wallingford, R. A.; Ewing, A. G. Anal. Chem. 1 9 8 7 , 59, 1762-1766.
(36) Park, S.; Lunte, C. E. Anal. Chem. 1 9 9 5 , 67, 4366-4370.
(37) Voegel, P. D.; Baldwin, R. P. Electrophoresis 1 9 9 7 , 18, 2267-2278.
(38) Holland, L. A.; Lunte, S. M, Anal. Commun. 1 9 9 8 , 35, 1H-4H.
(39) Lu, W.; Cassidy, R. M. Anal. Chem. 1 9 9 4 , 66, 200-204.
(40) Fermier, A. M.; Gostkowski, M. L.; Col6n, L. A. Anal. Chem. 1 9 9 6 , 68,
1661-1664.
(41) Zhong, M.; Lunte, S. M. Anal. Commun. 1 9 9 8 , 35, 209-212.
(42) Jacobson, S. C.; Hergenro¨ der, R.; Koutny, L. B.; Ramsey, J. M. Anal. Chem.
1 9 9 4 , 66, 1114-1118.
(43) Jacobson, S. C.; Hergenro¨ der, R.; Koutny, L. B.; Warmack, R. J.; Ramsey, J.
M. Anal. Chem. 1 9 9 4 , 66, 1107-1113.
(44) Koutny, L. B.; Schmalzing, D.; Taylor, T. A.; Fuchs, M. Anal. Chem. 1 9 9 6 ,
68, 18-22.
(26) Oates, M. D.; Cooper, B. R.; Jorgenson, J. W. Anal. Chem. 1 9 9 0 , 62, 1573-
1577.
(45) Effenhauser, C. S.; Manz, A.; Widmer, H. M. Anal. Chem. 1 9 9 3 , 65, 2637-
2642.
(27) Kristjansson, F.; Thakur, A.; Stobaugh, J. F. Anal. Chim. Acta. 1 9 9 2 , 262,
(46) Effenhauser, C. F.; Paulus, A.; Manz, A.; Widmer, H. M. Anal. Chem. 1 9 9 4 ,
66, 2949-2953.
209-215.
(28) Lunte, S. M.; Mohabbat, T.; Wong, O. S.; Kuwana, T. Anal. Biochem. 1 9 8 9 ,
178, 202-207.
(47) Wooley, A. T.; Lao, K.; Glazer, A. N.; Mathies, R. A. Anal. Chem. 1 9 9 8 , 70,
684-688.
(29) Nussbaum, M. A.; Przedwiecki, J. E.; Staerk, D. U.; Lunte, S. M.; Riley, C.
(48) Gavin, P. F.; Ewing, A. G. In Handbook of Capillary Electrophoresis, 2nd ed.;
Landers, J. P., Ed.; CRC Press, Inc.: Boca Raton, FL, 1997; Chapter 26.
M. Anal. Chem. 1 9 9 2 , 64, 1259-1263.
2222 Analytical Chemistry, Vol. 71, No. 11, June 1, 1999