M. Waibel, J. Hasserodt / Tetrahedron Letters 50 (2009) 2767–2769
2769
Table 1
the access to new derivatives of the quinazolin-4(3H)-one core that
are of interest in pharmaceutical research.
Fluorescence properties of HPQ and the synthesized analogs
Entry
Compound
kex,max (nm)
kem,max (nm)
Relative fluorescence
intensity a.u.
Acknowledgments
1
2
3
4
5
6
7
1
16
365
365
280
280
365
Sa
495
550
460
460
525
Sa
1.00 0.06
0.96 0.05
0.08 0.004
0.09 0.005
0.89 0.06
<0.0001
This work was supported by the French Research Ministry and
the CNRS. Michael Waibel acknowledges a European Doctoral Fel-
lowship from the Research Ministry.
15b
15a
14b
5a,b
10a,b
Sa
Sa
<0.0001
Supplementary data
a
S = screening of all possible wavelengths between k = 250 and k = 850 nm.
Experimental details for the synthesis and the characterization
data for all compounds are provided. Supplementary data associ-
ated with this article can be found, in the online version, at
also anilines 15a and 15b showed good fluorescence intensities
that were still four orders of magnitude higher than the one of
compounds 5 and 10. In addition, fluorophores 14b, 15a, and 15b
exhibit large Stokes shifts (P160 nm), which are useful for the de-
sign of fluorescence-based sensing systems of high sensitivity. For
example, a large Stokes shift can circumvent the problem of tissue
background fluorescence in in vivo tests.9
In attempting to correlate the structure with the fluorescence
properties, one finds among the phenols that lack of substitution
or introduction of an ortho-methoxy group is favorable, while a
para-amino group appears to be detrimental to fluorescence (1 vs
16 vs 5a,b).
References and notes
1. For a review see: Eguchi, S. Top. Heterocycl. Chem. 2006, 6, 113–156.
2. Bavetsias, V.; Skelton, L. A.; Yafai, F.; Mitchell, F.; Wilson, S. C.; Allan, B.;
Jackman, A. L. J. Med. Chem. 2002, 45, 3692–3702.
3. Wolfe, J. F.; Rathman, T. L.; Sleevi, M. C.; Campbell, J. A.; Greenwood, T. D. J. Med.
Chem. 1990, 33, 161–166.
4. Ozaki, K.-I.; Yamada, Y.; Oine, T.; Ishizuka, T.; Iwasawa, Y. J. Med. Chem. 1985,
28, 568–576.
5. DeRuiter, J.; Brubaker, A. N.; Millen, J.; Riley, T. N. J. Med. Chem. 1986, 29, 627–
629.
6. Dempcy, R. O.; Skibo, E. B. Biochemistry 1991, 30, 8480–8487.
7. Zhang, X. B.; Cheng, G.; Zhang, W. J.; Shen, G. L.; Yu, R. Q. Talanta 2007, 71, 171–
177.
8. Williams, D. L.; Heller, A. J. Phys. Chem. 1970, 74, 4473–4480.
9. Waibel, M.; Zhang, X. B.; Hasserodt, J. Synthesis 2009, 315–324. and references
cited therein.
10. For a review see: Connoly, D. J.; Cusack, D.; O’Sullivan, T. P.; Guiry, P. J.
Tetrahedron 2005, 61, 10153–10202.
11. Kikelj, D.. In Science of Synthesis; Thieme: Germany, 2004; Vol. 16, pp 573–749.
12. Ried, W.; Sinharay, A. Chem. Ber. 1963, 96, 3306–3311.
13. Hennequin, L. F.; Boyle, F. T.; Wardleworth, J. M.; Marsham, P. R.; Kimbell, R.;
Jackman, A. L. J. Med. Chem. 1996, 39, 695–704.
14. Connolly, D. J.; Guiry, P. J. Synlett 2001, 11, 1707–1710.
15. Takeuchi, H.; Hagiwara, S.; Eguchi, S. Tetrahedron 1989, 45, 6375–6386.
16. Petridou-Fischer, J.; Papadopoulos, E. P. J. Heterocycl. Chem. 1983, 20, 1159–
1167.
17. Luo, H.-Y.; Zhang, X.-B.; He, C.-L.; Shen, G.-L.; Yu, R.-Q. Spectrochim. Acta, Part A
2008, 70, 337–342.
18. Ando, M.; Emoto, S. Bull. Chem. Soc. Jpn. 1978, 51, 2433–2434.
19. Rosenström, U.; Sköld, C.; Plouffe, B.; Beaudry, H.; Lindeberg, G.; Botros, M.;
Nyberg, F.; Wolf, G.; Karlen, A.; Gallo-Payet, N.; Hallberg, A. J. Med. Chem. 2005,
48, 4009–4224.
20. Yang, Y.; Babiak, P.; Reymond, J.-L. Org. Biomol. Chem. 2006, 4, 1746–1754.
21. Wilshire, J. F. K. Aust. J. Chem. 1982, 35, 2497–2504.
22. Dei, S.; Bellucci, C.; Buccioni, M.; Ferraroni, M.; Gualtieri, F.; Guandalini, L.;
Manetti, D.; Matucci, R.; Romanelli, M. N.; Scapecchi, S.; Teodori, E. Bioorg. Med.
Chem. 2003, 11, 3153–3164.
In case of the anilines, molecules with electron-withdrawing ni-
tro groups in ortho or para position of the aryl ring displayed neg-
ligible fluorescence (10a,b). On the other hand, simple anilines
showed an increase in fluorescence intensity by four orders of
magnitude (15a,b vs 10a,b). Alkyl substitution of the aniline nitro-
gen appeared to have no significant impact (15a vs 15b). On the
other hand, introduction of an electron-withdrawing Cbz substitu-
ent into the amino group further increases the fluorescence inten-
sity by one order of magnitude (14b vs 15a, 15b). Similar
observations were reported in related compounds where the ani-
line nitrogen was part of an amide or sulfonamide unit.24
In conclusion, we have established efficient routes to novel phe-
nol and aniline derivatives of the quinazolin-4(3H)-one system.
The condensation of aldehydes with anthranilamide proved to be
tolerant to multiple substitution patterns, furnishing target com-
pounds that are highly functionalized on the 2-aryl ring. In partic-
ular, three of the synthesized compounds showed good to high
fluorescence intensities and large Stokes shifts and might thus find
applications in chemical sensor systems or enzyme assays. More-
over, the correlations between the substitution pattern on the 2-
aryl ring and the fluorescence properties made in this study will
help to direct our future work in the development of novel fluoro-
phores based on this system. Beyond these advantages, the syn-
thetic procedures established in this study may prove useful in
23. Le Sann, C.; Baron, A.; Mann, J.; van den Berg, H.; Gunaratnam, M.; Neidle, S.
Org. Biomol. Chem. 2006, 4, 1305–1312.
24. Haugland, R. P.; Steinberg, T. H.; Patton, W. P.; Diwu, Z. Patent US20020137068,
2002.