162
L. L. Chang, et al. / Bioorg. Med. Chem. Lett. 12 (2002) 159–163
little difference in binding towards either integrin (6a vs
2l). Replacing the aryl moiety by a methyl group pro-
duced a compound with a more balanced profile, mostly
at the expense of increased a4b1 binding (6b vs 6a).
2. (a) Bevilacqua, M. P. Annu. Rev. Immunol. 1993, 11, 767.
(b) Postigo, A. A.; Teixido, J.; Sanchez-Madrid, F. Res.
Immunol. 1993, 144, 723.
3. (a) Berlin, C.; Berg, E. L.; Briskin, M. J.; Andrew, D. P.;
Kilshaw, P. J.; Holzmann, I. L.; Weissman, A.; Hamann, A.;
Butcher, E. C. Cell 1993, 74, 185. (b) Briskin, J. J.; McEvoy,
L. M.; Butcher, E. C. Nature 1993, 363, 461. (c) Hamann, A.;
Andrew, D. P.; Jablonski-Westrich, D.; Holzmann, B.;
Butcher, E. C. J. Immunol. 1994, 152, 3282. (d) Bargatze, R. F.;
Jutila, M. A.; Butcher, E. C. Immunity 1995, 3, 99.
4. (a) Lobb, R. R.; Hemler, M. E. J. Clin. Invest. 1994, 94,
1722. (b) Lin, K.-C.; Castro, A. C. Curr. Opin. Chem. Bio.
1998, 2, 453. (c) Molossi, S.; Elices, M.; Arrhenius, T.; Diaz,
R.; Coulber, C.; Rabinovitch, M. J. Clin. Invest. 1995, 95,
2601. (d) Foster, C. A. J. Allergy. Clin. Immunol. 1996, 98,
S270. (e) Elices, M. Curr. Opin. Anti-Inflam. Immunomod.
Invest. Drugs 2000, 2, 228.
5. (a) Lobb, R. R.; Adams, S. P. Exp. Opin. Invest. Drugs
1999, 8, 935. (b) Adams, S. P.; Lobb, R. R. Annu. Rep. Med.
Chem. 1999, 34, 179. (c) Engleman, V. W.; Kellogg, M. S.;
Rogers, T. E. Annu. Rep. Med. Chem. 1996, 31, 191. (d)
Shroff, H. N.; Schwender, C. F.; Dottavio, D.; Yang, L.-L.;
Briskin, M. J. Bioorg. Med. Chem. Lett. 1996, 6, 2495. (e)
Harriman, G. C. B.; Schwender, C. F.; Gallant, D.; Cochran,
N. A.; Briskin, M. J. Bioorg. Med. Chem. Lett. 2000, 10, 1497.
6. Durette, P. L.; Hagmann, W. K.; MacCoss, M.; Mills, S.
G.; Mumford, R. A.; Van Riper, G. M.; Schmidt, J. A.;
Kevin, N. J. WO98/53814 A1, 1998; Chem. Abstr. 1999, 130,
52724m.
Thus, systematic SAR studies of the binding of a4b1
and a4b7 integrins to (N-arylsulfonyl)-prolyl-(O-sub-
stituted)-tyrosines revealed that an O-tyrosylcarbamate
could confer a 300- to 400-fold increase to the a4b7
binding affinity over that obtained from the parent
tyrosyl derivative, yielding low nanomolar a4b7 antago-
nists 2l, 5f, and 6a. In this study, this a4b7 binding site is
reached most effectively by a carbamate moiety derived
from the phenolic hydroxyl of P3-Tyr. This binding site
is averse to steric congestion of the carbamate sub-
stituents. The a4b1 integrin also accommodates this
carbamate but the receptor–ligand interaction here is
much less stringent in its spatial requirement of and
tolerance for the positioning of various heteroatoms,
enabling several different structural motifs to achieve a
modest gain in potency.
The pharmacokinetic (PK) profile of several of the
foregoing compounds were evaluated in rats (Table 4).
Generally, these compounds exhibited moderate to high
plasma clearance, low plasma half-life and poor oral
absorption. The metabolic potential of the acidic moiety
and the amide bond could both contribute to this type
of PK profile, in addition to possible metabolic lability
associated with carbamates of phenols.13
7. (a) Durette, P. L.; Hagmann, W. K.; MacCoss, M.; Mills,
S. G.; Mumford, R. A. WO98/53818 A1, 1998; Chem. Abstr.
1999, 130, 33016r. (b) Durette, P. L.; Hagmann, W. K.;
MacCoss, M.; Mills, S. G.; Mumford, R. A. WO98/53817 A1,
1998; Chem. Abstr. 1999, 130, 52736s.
Table 4. Pharmacokinetic parametersa of selected compounds
8. (a) Several structurally similar compounds were described
recently: Dappen, M. S.; Dressen, D. B.; Grant, F. S.; Konradi,
A. W.; Pleiss, M. A.; Semko, C. M.; Thorsett, E. D.; Freedman,
S. B.; Holsztynska, E. J.; Quinn, K. P.; Ashwell, S.; Banker, A.
L.; Baudy, R. B.; Bicksler, J. J.; Giverson, J.; Leeson, P. D.;
Lombardo, L. J.; Sarantakis, D. Abstract of Papers, Part X,
220th National Meeting of the American Chemical Society,
Washington, DC, Aug. 20–24, 2000; American Chemical
Society: Washington, DC, 2000; MEDI #135. (b) Thorsett, E.
D.; Dappen, M. S.; Dressen, D. B.; Ellingboe, J. W.; Grant, F.
S.; Jacobson, M.; Kincaid, S. L.; Konradi, A. W.; Kreft, A.;
Lombardo, L. J.; Mann, W.; Nunn, D.; Pleiss, M. A.;
Sabalski, J. E.; Sacchi, K.; Sarantakis, D.; Semko, C. M.
Abstract of Papers, Part X, 220th National Meeting of the
American Chemical Society, Washington, DC, Aug. 20–24,
2000; American Chemical Society: Washington, DC, 2000;
MEDI #134.
9. (a) Hagmann, W. K.; Durette, P. L.; Lanza, T. J.; Kevin,
N. J.; De Laszlo, S. E.; Kopka, I. E.; Young, D. N.; Magriotis,
P. A.; Li, B.; Lin, L. S.; Yang, G. X.-Q.; Kamenecka, T.; Chang,
L. L.; Wilson, J.; MacCoss, M.; Mills, S. G.; Van Riper, G.;
McCauley, E. D.; Egger, L. A.; Kidambi, U.; Lyons, K. A.;
Vincent, S. H.; Stearns, R. A.; Colleti, A. E.; Teffera, Y.; Tong,
X.; Wang, J.; Zheng, S.; Owens, K. A.; Levorse, D. A.; Kim, P.;
Schmidt, J. A.; Mumford, R. A. Bioorg. Med. Chem. Lett. 2001,
11, 2709. (b) For a study on substituted Phe’s and related
compounds at P3, see: Kopka, I. E.; Young, D.; Lin, L.;
Mumford, R. A.; MacCoss, M.; Mills, S. G.; Van Riper, G.;
McCauley, E.; Egger, L.; Kidambi, U.; Schmidt, J. A.; Lyons,
K.; Stearns, R.; Vincent, S.; Colletti, A.; Wang, Z.; Tong, S.;
Wang, J.; Zheng, S.; Owens, K.; Levorse, D.; Hagmann, W.
K. Bioorg. Med. Chem. Lett. In press.
b
c
Compd
Clp
(mL/kg/min)
t1/2 (h)
F (%)
5b
5e
5f
27
38
50
176
NDd
0.2
ND
0.2
6
11
3
ND
6a
aSprague–Dawley rats.
bDose: 1 mg/kg iv; 2 mg/kg po (cassette dosing).
ct1=2=plasma half-life(0À8h)
.
dND, not determined.
This investigation resulted in the discovery of highly
potent small molecule dual a4b1/a4b7 integrin antago-
nists. Indeed, the dual antagonists identified from this
study, for example, 6a [a4b1 (VCAM-Ig) IC50=0.14 nM,
and a4b7 (VCAM-Ig) IC50=2.83 nM] have been instru-
mental as tools for understanding the biochemistry of
these integrins and their role in inflammatory processes.
Acknowledgement
We thank Ms. Amy Bernick for mass spectral analysis.
References and Notes
1. (a) Butcher, E. C. Cell 1991, 67, 1033. (b) Springer, T. A.
Cell 1994, 76, 301. (c) Cox, D.; Aoki, T.; Seki, J.; Motoyama,
Y.; Yoshida, K. Med. Res. Rev. 1994, 14, 195.
10. This and all other compounds prepared were character-
ized by mass spectrum (FAB or LC/MS), and 300, 400, or
500 MHz H NMR.
1